-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathlgr_element_specific.cpp
155 lines (143 loc) · 5.35 KB
/
lgr_element_specific.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#include <lgr_bar.hpp>
#include <lgr_composite_tetrahedron.hpp>
#include <lgr_element_specific.hpp>
#include <lgr_input.hpp>
#include <lgr_state.hpp>
#include <lgr_tetrahedron.hpp>
#include <lgr_triangle.hpp>
namespace lgr {
void
initialize_V(input const& in, state& s)
{
switch (in.element) {
case BAR: initialize_bar_V(s); break;
case TRIANGLE: initialize_triangle_V(s); break;
case TETRAHEDRON: initialize_tetrahedron_V(s); break;
case COMPOSITE_TETRAHEDRON: initialize_composite_tetrahedron_V(s); break;
}
}
void
initialize_grad_N(input const& in, state& s)
{
switch (in.element) {
case BAR: initialize_bar_grad_N(s); break;
case TRIANGLE: initialize_triangle_grad_N(s); break;
case TETRAHEDRON: initialize_tetrahedron_grad_N(s); break;
case COMPOSITE_TETRAHEDRON: initialize_composite_tetrahedron_grad_N(s); break;
}
}
HPC_NOINLINE inline void
update_h_min_height(input const&, state& s)
{
auto const point_nodes_to_grad_N = s.grad_N.cbegin();
auto const elements_to_h_min = s.h_min.begin();
auto const points_to_point_nodes = s.points * s.nodes_in_element;
auto const elements_to_points = s.elements * s.points_in_element;
auto functor = [=] HPC_DEVICE(element_index const element) {
constexpr point_in_element_index fp(0);
auto const point = elements_to_points[element][fp];
hpc::length<double> min_height = hpc::numeric_limits<double>::max();
auto const point_nodes = points_to_point_nodes[point];
for (auto const point_node : point_nodes) {
auto const grad_N = point_nodes_to_grad_N[point_node].load();
auto const height = 1.0 / norm(grad_N);
min_height = hpc::min(min_height, height);
}
elements_to_h_min[element] = min_height;
};
hpc::for_each(hpc::device_policy(), s.elements, functor);
}
HPC_NOINLINE inline void
update_triangle_h_min(input const& in, state& s)
{
switch (in.h_min) {
case MINIMUM_HEIGHT: update_h_min_height(in, s); break;
case INBALL_DIAMETER: update_triangle_h_min_inball(in, s); break;
}
}
HPC_NOINLINE inline void
update_tetrahedron_h_min(input const& in, state& s)
{
switch (in.h_min) {
case MINIMUM_HEIGHT: update_h_min_height(in, s); break;
case INBALL_DIAMETER: update_tetrahedron_h_min_inball(in, s); break;
}
}
HPC_NOINLINE inline void
update_meshless_h_min(input const&, state&)
{
}
void
update_h_min(input const& in, state& s)
{
switch (in.element) {
case BAR: update_bar_h_min(in, s); break;
case TRIANGLE: update_triangle_h_min(in, s); break;
case TETRAHEDRON: update_tetrahedron_h_min(in, s); break;
case COMPOSITE_TETRAHEDRON: update_composite_tetrahedron_h_min(s); break;
}
}
void
update_h_art(input const& in, state& s)
{
switch (in.element) {
case BAR: update_bar_h_art(s); break;
case TRIANGLE: update_triangle_h_art(s); break;
case TETRAHEDRON: update_tetrahedron_h_art(s); break;
case COMPOSITE_TETRAHEDRON: update_tetrahedron_h_art(s); break;
}
}
HPC_NOINLINE inline void
update_nodal_mass_uniform(state& s, material_index const material)
{
auto const nodes_to_node_elements = s.nodes_to_node_elements.cbegin();
auto const node_elements_to_elements = s.node_elements_to_elements.cbegin();
auto const points_to_rho = s.rho.cbegin();
auto const points_to_V = s.V.cbegin();
assert(s.material_mass[material].size() == s.nodes.size());
auto const nodes_to_m = s.material_mass[material].begin();
auto const N = 1.0 / double(hpc::weaken(s.nodes_in_element.size()));
auto const elements_to_points = s.elements * s.points_in_element;
auto const elements_to_material = s.material.cbegin();
auto functor = [=] HPC_DEVICE(node_index const node) {
hpc::mass<double> m(0.0);
auto const node_elements = nodes_to_node_elements[node];
for (auto const node_element : node_elements) {
element_index const element = node_elements_to_elements[node_element];
material_index const element_material = elements_to_material[element];
if (element_material != material) continue;
for (auto const point : elements_to_points[element]) {
auto const rho = points_to_rho[point];
auto const V = points_to_V[point];
m = m + (rho * V) * N;
}
}
nodes_to_m[node] = m;
};
hpc::for_each(hpc::device_policy(), s.node_sets[material], functor);
}
void
update_nodal_mass(input const& in, state& s)
{
for (auto const material : in.materials) {
switch (in.element) {
case BAR:
case TRIANGLE:
case TETRAHEDRON: update_nodal_mass_uniform(s, material); break;
case COMPOSITE_TETRAHEDRON: update_nodal_mass_composite_tetrahedron(s, material); break;
}
}
hpc::fill(hpc::device_policy(), s.mass, hpc::mass<double>(0.0));
for (auto const material : in.materials) {
auto const nodes_to_total = s.mass.begin();
auto const nodes_to_partial = s.material_mass[material].cbegin();
auto functor = [=] HPC_DEVICE(node_index const node) {
auto m_total = nodes_to_total[node];
auto const m_partial = nodes_to_partial[node];
m_total = m_total + m_partial;
nodes_to_total[node] = m_total;
};
hpc::for_each(hpc::device_policy(), s.node_sets[material], functor);
}
}
} // namespace lgr