-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathanswer_69.py
174 lines (128 loc) · 4.68 KB
/
answer_69.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import cv2
import numpy as np
import matplotlib.pyplot as plt
# get HOG
def HOG(img):
# Grayscale
def BGR2GRAY(img):
gray = 0.2126 * img[..., 2] + 0.7152 * img[..., 1] + 0.0722 * img[..., 0]
return gray
# Magnitude and gradient
def get_gradXY(gray):
H, W = gray.shape
# padding before grad
gray = np.pad(gray, (1, 1), 'edge')
# get grad x
gx = gray[1:H+1, 2:] - gray[1:H+1, :W]
# get grad y
gy = gray[2:, 1:W+1] - gray[:H, 1:W+1]
# replace 0 with
gx[gx == 0] = 1e-6
return gx, gy
# get magnitude and gradient
def get_MagGrad(gx, gy):
# get gradient maginitude
magnitude = np.sqrt(gx ** 2 + gy ** 2)
# get gradient angle
gradient = np.arctan(gy / gx)
gradient[gradient < 0] = np.pi / 2 + gradient[gradient < 0] + np.pi / 2
return magnitude, gradient
# Gradient histogram
def quantization(gradient):
# prepare quantization table
gradient_quantized = np.zeros_like(gradient, dtype=np.int)
# quantization base
d = np.pi / 9
# quantization
for i in range(9):
gradient_quantized[np.where((gradient >= d * i) & (gradient <= d * (i + 1)))] = i
return gradient_quantized
# get gradient histogram
def gradient_histogram(gradient_quantized, magnitude, N=8):
# get shape
H, W = magnitude.shape
# get cell num
cell_N_H = H // N
cell_N_W = W // N
histogram = np.zeros((cell_N_H, cell_N_W, 9), dtype=np.float32)
# each pixel
for y in range(cell_N_H):
for x in range(cell_N_W):
for j in range(N):
for i in range(N):
histogram[y, x, gradient_quantized[y * 4 + j, x * 4 + i]] += magnitude[y * 4 + j, x * 4 + i]
return histogram
# histogram normalization
def normalization(histogram, C=3, epsilon=1):
cell_N_H, cell_N_W, _ = histogram.shape
## each histogram
for y in range(cell_N_H):
for x in range(cell_N_W):
#for i in range(9):
histogram[y, x] /= np.sqrt(np.sum(histogram[max(y - 1, 0) : min(y + 2, cell_N_H),
max(x - 1, 0) : min(x + 2, cell_N_W)] ** 2) + epsilon)
return histogram
# 1. BGR -> Gray
gray = BGR2GRAY(img)
# 1. Gray -> Gradient x and y
gx, gy = get_gradXY(gray)
# 2. get gradient magnitude and angle
magnitude, gradient = get_MagGrad(gx, gy)
# 3. Quantization
gradient_quantized = quantization(gradient)
# 4. Gradient histogram
histogram = gradient_histogram(gradient_quantized, magnitude)
# 5. Histogram normalization
histogram = normalization(histogram)
return histogram
# draw HOG
def draw_HOG(img, histogram):
# Grayscale
def BGR2GRAY(img):
gray = 0.2126 * img[..., 2] + 0.7152 * img[..., 1] + 0.0722 * img[..., 0]
return gray
def draw(gray, histogram, N=8):
# get shape
H, W = gray.shape
cell_N_H, cell_N_W, _ = histogram.shape
## Draw
out = gray[1 : H + 1, 1 : W + 1].copy().astype(np.uint8)
for y in range(cell_N_H):
for x in range(cell_N_W):
cx = x * N + N // 2
cy = y * N + N // 2
x1 = cx + N // 2 - 1
y1 = cy
x2 = cx - N // 2 + 1
y2 = cy
h = histogram[y, x] / np.sum(histogram[y, x])
h /= h.max()
for c in range(9):
#angle = (20 * c + 10 - 90) / 180. * np.pi
# get angle
angle = (20 * c + 10) / 180. * np.pi
rx = int(np.sin(angle) * (x1 - cx) + np.cos(angle) * (y1 - cy) + cx)
ry = int(np.cos(angle) * (x1 - cx) - np.cos(angle) * (y1 - cy) + cy)
lx = int(np.sin(angle) * (x2 - cx) + np.cos(angle) * (y2 - cy) + cx)
ly = int(np.cos(angle) * (x2 - cx) - np.cos(angle) * (y2 - cy) + cy)
# color is HOG value
c = int(255. * h[c])
# draw line
cv2.line(out, (lx, ly), (rx, ry), (c, c, c), thickness=1)
return out
# get gray
gray = BGR2GRAY(img)
# draw HOG
out = draw(gray, histogram)
return out
# Read image
img = cv2.imread("imori.jpg").astype(np.float32)
# get HOG
histogram = HOG(img)
# draw HOG
out = draw_HOG(img, histogram)
# Save result
cv2.imwrite("out.jpg", out)
cv2.imshow("result", out)
cv2.waitKey(0)
cv2.destroyAllWindows()