-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_regress_motion.py
54 lines (39 loc) · 1.6 KB
/
train_regress_motion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from doit_train import do_training, get_motion_transform
from torchio.transforms import RandomMotionFromTimeCourse
#from nibabel.viewers import OrthoSlicer3D as ov
import torch
torch.multiprocessing.set_sharing_strategy('file_system')
par_queue = {'windows_size': [64], 'queue_length': 800,
'samples_per_volume': 16,}
batch_size, num_workers, max_epochs = 4, 6, 100
cuda, verbose = True, False
in_size=[182, 218, 182]
in_size=[64, 64, 64]
res_dir = '/network/lustre/iss01/cenir/analyse/irm/users/romain.valabregue/QCcnn/NN_regres_motion/'
res_name = 'RegressMot_PATCH_HCPbrain_ms'
import socket
myHostName = socket.gethostname()
if 'le53' in myHostName:
par_queue = {'windows_size': [64], 'queue_length': 128,
'samples_per_volume': 64, }
batch_size, num_workers, max_epochs = 4, 2, 1
cuda, verbose = False, True
res_dir = '/home/romain/QCcnn/'
transforms = get_motion_transform()
train_csv_file, val_csv_file = 'healthy_brain_ms_train_hcp400.csv', 'healthy_brain_ms_val_hcp200.csv'
par_model = {'network_name': 'ConvN',
'losstype': 'BCElogit',
'lr': 1e-5,
'conv_block': [32, 64, 128, 256], 'linear_block': [40, 50],
'in_size': in_size,
'cuda': cuda,
'max_epochs': max_epochs}
#'conv_block':[8, 16, 32, 64, 128]
doit = do_training(res_dir, res_name, verbose)
doit.set_data_loader(train_csv_file, val_csv_file, transforms, batch_size, num_workers, par_queue=par_queue)
doit.set_model(par_model)
doit.train_regress_motion()
test=False
if test:
td = doit.train_dataloader
data = next(iter(td))