-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathgenerate_samples.py
executable file
·481 lines (402 loc) · 16.7 KB
/
generate_samples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
#!/usr/bin/env python3
import argparse
import gc
import itertools as it
import json
import logging
import os
import wave
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
import torchaudio
import webrtcvad
from piper_phonemize import phonemize_espeak
from piper_train.vits import commons
_DIR = Path(__file__).parent
_LOGGER = logging.getLogger(__name__)
logging.basicConfig(level=logging.DEBUG)
# Main generation function
def generate_samples(
text: Union[List[str], str],
output_dir: Union[str, Path],
max_samples: Optional[int] = None,
file_names: Optional[List[str]] = None,
model: Union[str, Path] = _DIR / "models" / "en_US-libritts_r-medium.pt",
batch_size: int = 1,
slerp_weights: Tuple[float, ...] = (0.5,),
length_scales: Tuple[float, ...] = (0.75, 1, 1.25),
noise_scales: Tuple[float, ...] = (0.667,),
noise_scale_ws: Tuple[float, ...] = (0.8,),
max_speakers: Optional[float] = None,
verbose: bool = False,
auto_reduce_batch_size: bool = False,
min_phoneme_count: Optional[int] = None,
**kwargs,
) -> None:
"""
Generate synthetic speech clips, saving the clips to the specified output directory.
Args:
text (List[str]): The text to convert into speech. Can be either a
a list of strings, or a path to a file with text on each line.
output_dir (str): The location to save the generated clips.
max_samples (int): The maximum number of samples to generate.
file_names (List[str]): The names to use when saving the files. Must be the same length
as the `text` argument, if a list.
model (str): The path to the STT model to use for generation.
batch_size (int): The batch size to use when generated the clips
slerp_weights (List[float]): The weights to use when mixing speakers via SLERP.
length_scales (List[float]): Controls the average duration/speed of the generated speech.
noise_scales (List[float]): A parameter for overall variability of the generated speech.
noise_scale_ws (List[float]): A parameter for the stochastic duration of words/phonemes.
max_speakers (int): The maximum speaker number to use, if the model is multi-speaker.
verbose (bool): Enable or disable more detailed logging messages (default: False).
auto_reduce_batch_size (bool): Automatically and temporarily reduce the batch size
if CUDA OOM errors are detected, and try to resume generation.
min_phoneme_count (int): If set, ensure this number of phonemes is always sent to the model.
Clip audio to extract original phrase.
Returns:
None
"""
if max_samples is None:
max_samples = len(text)
_LOGGER.debug("Loading %s", model)
model_path = Path(model)
torch_model = torch.load(model_path)
torch_model.eval()
_LOGGER.info("Successfully loaded the model")
if torch.cuda.is_available():
torch_model.cuda()
_LOGGER.debug("CUDA available, using GPU")
output_dir = Path(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
config_path = f"{model_path}.json"
with open(config_path, "r", encoding="utf-8") as config_file:
config = json.load(config_file)
voice = config["espeak"]["voice"]
sample_rate = config["audio"]["sample_rate"]
num_speakers = config["num_speakers"]
if max_speakers is not None:
num_speakers = min(num_speakers, max_speakers)
max_len = None
sample_idx = 0
is_done = False
settings_iter = it.cycle(
it.product(
slerp_weights,
length_scales,
noise_scales,
noise_scale_ws,
)
)
# Define resampler to get to 16khz (https://pytorch.org/audio/stable/tutorials/audio_resampling_tutorial.html#kaiser-best)
sample_rate = 22050
resample_rate = 16000
resampler = torchaudio.transforms.Resample(
sample_rate,
resample_rate,
lowpass_filter_width=64,
rolloff=0.9475937167399596,
resampling_method="sinc_interp_kaiser",
beta=14.769656459379492,
)
speakers_iter = it.cycle(it.product(range(num_speakers), range(num_speakers)))
speakers_batch = list(it.islice(speakers_iter, 0, batch_size))
if isinstance(text, str) and os.path.exists(text):
texts = it.cycle(
[
i.strip()
for i in open(text, "r", encoding="utf-8").readlines()
if len(i.strip()) > 0
]
)
elif isinstance(text, list):
texts = it.cycle(text)
else:
texts = it.cycle([text])
if file_names:
file_names = it.cycle(file_names)
batch_idx = 0
while speakers_batch:
if is_done:
break
batch_size = len(speakers_batch)
slerp_weight, length_scale, noise_scale, noise_scale_w = next(settings_iter)
with torch.no_grad():
speaker_1 = torch.LongTensor([s[0] for s in speakers_batch])
speaker_2 = torch.LongTensor([s[1] for s in speakers_batch])
phoneme_ids_by_batch = []
clip_indexes_by_batch = []
for i in range(batch_size):
phoneme_ids, clip_phoneme_index = get_phonemes(
voice, config, next(texts), verbose, min_phoneme_count
)
phoneme_ids_by_batch.append(phoneme_ids)
clip_indexes_by_batch.append(clip_phoneme_index)
def right_pad_lists(lists):
max_length = max(len(lst) for lst in lists)
padded_lists = []
for lst in lists:
padded_l = lst + [1] * (
max_length - len(lst)
) # phoneme 1 (corresponding to '^' character seems to work best)
padded_lists.append(padded_l)
return padded_lists
phoneme_ids_by_batch = right_pad_lists(phoneme_ids_by_batch)
if auto_reduce_batch_size:
oom_error = True
counter = 1
while oom_error is True:
try:
audio, phoneme_samples = generate_audio(
torch_model,
speaker_1[0 : batch_size // counter],
speaker_2[0 : batch_size // counter],
phoneme_ids_by_batch[0 : batch_size // counter],
slerp_weight,
noise_scale,
noise_scale_w,
length_scale,
max_len,
)
oom_error = False
except torch.cuda.OutOfMemoryError:
torch.cuda.empty_cache()
gc.collect()
counter += 1 # reduce batch size to avoid OOM errors
else:
audio, phoneme_samples = generate_audio(
torch_model,
speaker_1,
speaker_2,
phoneme_ids_by_batch,
slerp_weight,
noise_scale,
noise_scale_w,
length_scale,
max_len,
)
# Clip audio when using min_phoneme_count
for i, clip_phoneme_index in enumerate(clip_indexes_by_batch):
if clip_phoneme_index is not None:
first_sample_idx = int(
phoneme_samples[i].flatten()[:clip_phoneme_index-1].sum().item()
)
# Fill start of audio with silence until actual sample.
# It will be removed in the next stage.
audio[i, 0, :first_sample_idx] = 0
# Fill time after last speech with silence.
# It will be removed in the next stage
last_sample_idx = int(phoneme_samples[i].flatten().sum().item())
audio[i, 0, last_sample_idx+1:] = 0
# Resample audio
audio = resampler(audio.cpu()).numpy()
audio_int16 = audio_float_to_int16(audio)
for audio_idx in range(audio_int16.shape[0]):
# Trim any silenced audio
audio_data = np.trim_zeros(audio_int16[audio_idx].flatten())
# Use webrtcvad to trim any remaining silence from the clips
audio_data = remove_silence(audio_int16[audio_idx].flatten())[
None,
]
if isinstance(file_names, it.cycle):
wav_path = output_dir / next(file_names)
else:
wav_path = output_dir / f"{sample_idx}.wav"
wav_file: wave.Wave_write = wave.open(str(wav_path), "wb")
with wav_file:
wav_file.setframerate(resample_rate)
wav_file.setsampwidth(2)
wav_file.setnchannels(1)
wav_file.writeframes(audio_data)
sample_idx += 1
if sample_idx >= max_samples:
is_done = True
break
# print(f"Batch {batch_idx +1}/{max_samples//batch_size} complete", " "*200, end='\r')
# Next batch
_LOGGER.debug("Batch %s/%s complete", batch_idx + 1, max_samples // batch_size)
speakers_batch = list(it.islice(speakers_iter, 0, batch_size))
batch_idx += 1
_LOGGER.info("Done")
def remove_silence(
x: np.ndarray,
frame_duration: float = 0.030,
sample_rate: int = 16000,
min_start: int = 2000,
) -> np.ndarray:
"""Uses webrtc voice activity detection to remove silence from the clips"""
vad = webrtcvad.Vad(0)
if x.dtype in (np.float32, np.float64):
x = (x * 32767).astype(np.int16)
x_new = x[0:min_start].tolist()
step_size = int(sample_rate * frame_duration)
for i in range(min_start, x.shape[0] - step_size, step_size):
vad_res = vad.is_speech(x[i : i + step_size].tobytes(), sample_rate)
if vad_res:
x_new.extend(x[i : i + step_size].tolist())
return np.array(x_new).astype(np.int16)
def generate_audio(
model,
speaker_1,
speaker_2,
phoneme_ids,
slerp_weight,
noise_scale,
noise_scale_w,
length_scale,
max_len,
):
x = torch.LongTensor(phoneme_ids)
x_lengths = torch.LongTensor([len(i) for i in phoneme_ids])
if torch.cuda.is_available():
speaker_1 = speaker_1.cuda()
speaker_2 = speaker_2.cuda()
x = x.cuda()
x_lengths = x_lengths.cuda()
x, m_p_orig, logs_p_orig, x_mask = model.enc_p(x, x_lengths)
emb0 = model.emb_g(speaker_1)
emb1 = model.emb_g(speaker_2)
g = slerp(emb0, emb1, slerp_weight).unsqueeze(-1) # [b, h, 1]
if model.use_sdp:
logw = model.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
else:
logw = model.dp(x, x_mask, g=g)
w = torch.exp(logw) * x_mask * length_scale
w_ceil = torch.ceil(w)
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
y_mask = torch.unsqueeze(
commons.sequence_mask(y_lengths, y_lengths.max()), 1
).type_as(x_mask)
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
attn = commons.generate_path(w_ceil, attn_mask)
m_p = torch.matmul(attn.squeeze(1), m_p_orig.transpose(1, 2)).transpose(
1, 2
) # [b, t', t], [b, t, d] -> [b, d, t']
logs_p = torch.matmul(attn.squeeze(1), logs_p_orig.transpose(1, 2)).transpose(
1, 2
) # [b, t', t], [b, t, d] -> [b, d, t']
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
z = model.flow(z_p, y_mask, g=g, reverse=True)
o = model.dec((z * y_mask)[:, :, :max_len], g=g)
audio = o
phoneme_samples = w_ceil * 256 # hop length
return audio, phoneme_samples
def get_phonemes(
voice: str,
config: Dict[str, Any],
text: str,
verbose: bool = False,
min_phoneme_count: Optional[int] = None,
) -> Tuple[List[int], Optional[int]]:
# Combine all sentences
phonemes = [
p
for sentence_phonemes in phonemize_espeak(text, voice)
for p in sentence_phonemes
]
if verbose is True:
_LOGGER.debug("Phonemes: %s", phonemes)
id_map = config["phoneme_id_map"]
# Beginning of utterance
phoneme_ids = list(id_map["^"])
phoneme_ids.extend(id_map["_"])
# Phoneme ids for just the text
text_phoneme_ids = []
for phoneme in phonemes:
p_ids = id_map.get(phoneme)
if p_ids is not None:
phoneme_ids.extend(p_ids)
text_phoneme_ids.extend(p_ids)
phoneme_ids.extend(id_map["_"])
text_phoneme_ids.extend(id_map["_"])
# Index where audio should be clipped at.
# When None, all of the audio will be used.
clip_phoneme_index: Optional[int] = None
if min_phoneme_count is not None:
# Repeat phrase until minimum phoneme count is met.
# NOTE: It is critical that the ^ and $ phonemes are not repeated here.
while (len(phoneme_ids) - 1) < min_phoneme_count:
# We will clip audio at the beginning of the last phrase
clip_phoneme_index = len(phoneme_ids) - 1
phoneme_ids.extend(text_phoneme_ids)
# End of utterance
phoneme_ids.extend(id_map["$"])
return phoneme_ids, clip_phoneme_index
def slerp(v1, v2, t: float, DOT_THR: float = 0.9995, zdim: int = -1):
"""SLERP for pytorch tensors interpolating `v1` to `v2` with scale of `t`.
`DOT_THR` determines when the vectors are too close to parallel.
If they are too close, then a regular linear interpolation is used.
`zdim` is the feature dimension over which to compute norms and find angles.
For example: if a sequence of 5 vectors is input with shape [5, 768]
Then `zdim = 1` or `zdim = -1` computes SLERP along the feature dim of 768.
Theory Reference:
https://splines.readthedocs.io/en/latest/rotation/slerp.html
PyTorch reference:
https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3
Numpy reference:
https://gist.github.com/dvschultz/3af50c40df002da3b751efab1daddf2c
"""
# take the dot product between normalized vectors
v1_norm = v1 / torch.norm(v1, dim=zdim, keepdim=True)
v2_norm = v2 / torch.norm(v2, dim=zdim, keepdim=True)
dot = (v1_norm * v2_norm).sum(zdim)
# if the vectors are too close, return a simple linear interpolation
if (torch.abs(dot) > DOT_THR).any():
res = (1 - t) * v1 + t * v2
# else apply SLERP
else:
# compute the angle terms we need
theta = torch.acos(dot)
theta_t = theta * t
sin_theta = torch.sin(theta)
sin_theta_t = torch.sin(theta_t)
# compute the sine scaling terms for the vectors
s1 = torch.sin(theta - theta_t) / sin_theta
s2 = sin_theta_t / sin_theta
# interpolate the vectors
res = (s1.unsqueeze(zdim) * v1) + (s2.unsqueeze(zdim) * v2)
return res
def audio_float_to_int16(
audio: np.ndarray, max_wav_value: float = 32767.0
) -> np.ndarray:
"""Normalize audio and convert to int16 range"""
audio_norm = audio * (max_wav_value / max(0.01, np.max(np.abs(audio))))
audio_norm = np.clip(audio_norm, -max_wav_value, max_wav_value)
audio_norm = audio_norm.astype("int16")
return audio_norm
def main() -> None:
"""Main entry point."""
# Get command line arguments
parser = argparse.ArgumentParser()
parser.add_argument("text")
parser.add_argument("--max-samples", required=True, type=int)
parser.add_argument(
"--model", default=_DIR / "models" / "en_US-libritts_r-medium.pt"
)
parser.add_argument("--batch-size", type=int, default=1)
parser.add_argument("--slerp-weights", nargs="+", type=float, default=[0.5])
parser.add_argument(
"--length-scales", nargs="+", type=float, default=[1.0, 0.75, 1.25, 1.4]
)
parser.add_argument(
"--noise-scales",
nargs="+",
type=float,
default=[0.667, 0.75, 0.85, 0.9, 1.0, 1.4],
)
parser.add_argument("--noise-scale-ws", nargs="+", type=float, default=[0.8])
parser.add_argument("--output-dir", default="output")
parser.add_argument(
"--max-speakers",
type=int,
help="Maximum number of speakers to use (default: all)",
)
parser.add_argument("--min-phoneme-count", type=int)
parser.add_argument("--verbose", action="store_true")
args = parser.parse_args().__dict__
# Generate speech
generate_samples(**args)
if __name__ == "__main__":
main()