-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsample_prior.py
77 lines (65 loc) · 3.22 KB
/
sample_prior.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import torch
import numpy as np
import torchvision.transforms as transforms
from utils import SmilesDataset, image_grid
from plotters import LatentPlotter
from models import CVAE
from PIL import Image
def sample_prior(degree, RESIZE, LATENT_SIZE):
"""
Given a degree "smile degree", LATENT_SIZE the size of the latent space used to train the model
and the RESIZE the size (pixels) of the pictures used to train the model this function samples randomly the
latent space (normal dist samples), then decodes the random samples using the condition given by the
"smlie degree" parameter to produce synthetic data for a given smile level.
:param degree: the smile strenght degree, originally bound between [-1 (really not smiley),1 (really smiley)] bu the model
can generalize extending a bit over the range.
:type degree: float
:param RESIZE: resize integer parameter used when training the model.
:type RESIZE: int
:param LATENT_SIZE: latent space dimension integer parameter used when training the model.
:type LATENT_SIZE: int
"""
BATCH_SIZE = 32
# prepare the data
transform = transforms.Compose(
[
transforms.Resize((RESIZE,RESIZE),interpolation=Image.NEAREST),
transforms.ToTensor()
])
dataset = SmilesDataset(csv_file="datasets/smiles_dataset.txt", root_dir="datasets/images/", transform=transform)
dataloader_eval = torch.utils.data.DataLoader(dataset, batch_size=32)
for sample in dataloader_eval:
input_shape = sample["image"].shape
break
# prepare the network and plotting functions
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
cvae = CVAE(input_size=input_shape, latent_size=LATENT_SIZE).to(device)
if torch.cuda.is_available():
cvae.load_state_dict(torch.load("model_savepoints/model.pt")["model_state_dict"])
else:
cvae.load_state_dict(torch.load("model_savepoints/model.pt", map_location=torch.device('cpu'))["model_state_dict"])
cvae.eval()
for sample in dataloader_eval:
images = sample["image"].to(device)
encodings = degree + 0.0*sample["encode"]
encodings = encodings.to(device)
xhat, _= cvae.sample_prior(32, degree)
break
images = []
for img in xhat:
img = (255*img).cpu().detach().numpy().astype(np.uint8)
img = np.transpose(img, (1, 2, 0))
pil_image = Image.fromarray(img).convert("RGB")
images.append(pil_image)
grid = image_grid(images, 4, 8, RESIZE, RESIZE)
grid.save(f"results/sampled/sampled_{degree}.png")
if __name__ == "__main__":
import argparse
# parsing user input
# example: python sample_prior.py --degree=0.6 --resize=50 --latent=50
parser = argparse.ArgumentParser()
parser.add_argument("--degree", help="Smile degree [-1,1] (Defaults 0.6)", default=0.6, type=float)
parser.add_argument("--resize", help="Resized dimension (pixels, defaults 50)", default=50, type=int)
parser.add_argument("--latent", help="Latent dimension (defaults 50)", default=50, type=int)
args = parser.parse_args()
sample_prior(degree=args.degree, RESIZE=args.resize, LATENT_SIZE=args.latent)