-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
214 lines (178 loc) · 7.87 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import torch
import torch.nn as nn
class ParamGaussian(torch.distributions.Distribution):
def __init__(self, mu, log_sigma):
self.mu = mu
self.sigma = log_sigma.exp()
def get_eps(self):
return torch.rand_like(self.sigma)
def rsample(self):
eps = self.get_eps()
return self.mu + self.sigma*eps
def log_prob(self, z):
normal_dist = torch.distributions.Distribution.normal.Normal(loc=self.mu, scale=self.sigma, validate_args=False)
return normal_dist.log_prob(z)
class Encoder(nn.Module):
def __init__(self, input_size, latent_size, vae=False):
super(Encoder, self).__init__()
self.input_size = input_size
self.input_channels = input_size[1]
self.input_height = input_size[2]
self.input_width = input_size[3]
self.latent_size = latent_size
self.vae = vae
self.encoder_cnn = nn.Sequential(
# e.g [3,50,50]
nn.Conv2d(in_channels=self.input_channels, out_channels=32, kernel_size=6, stride=2, padding=2),
nn.BatchNorm2d(32),
nn.LeakyReLU(),
# e.g [32,25,25]
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=2, padding=2),
nn.BatchNorm2d(64),
nn.LeakyReLU(),
# e.g [64,13,13]
nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.LeakyReLU(),
# e.g [128,7,7]
nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.LeakyReLU(),
# e.g [256,4,4]
)
# Flatten layer e.g [256,4,4] -> 256x4x4=4096
self.flatten = nn.Flatten(start_dim=1)
# Linear section e.g 4096 -> 2*latent_space
latent_size = 2*self.latent_size if self.vae else self.latent_size
self.encoder_lin = nn.Sequential(
nn.Linear(in_features=4096, out_features=1024),
nn.LeakyReLU(),
nn.Linear(in_features=1024, out_features=256),
nn.LeakyReLU(),
nn.Linear(in_features=256, out_features=latent_size)
)
def forward(self, x):
x = self.encoder_cnn(x) # [3,50,50] -> [256,4,4]
x = self.flatten(x) # [256,4,4] -> 4096
x = self.encoder_lin(x) # 4096 -> 2*latent_size
return x
class Decoder(nn.Module):
def __init__(self, output_size, latent_size):
super(Decoder, self).__init__()
self.output_size = output_size
self.out_channels = output_size[1]
self.out_height = output_size[2]
self.out_width = output_size[3]
self.latent_size = latent_size
# linear section (e.g latent_size -> 4096)
self.decoder_lin = nn.Sequential(
nn.Linear(in_features=latent_size, out_features=256),
nn.LeakyReLU(),
nn.Linear(in_features=256, out_features=1024),
nn.LeakyReLU(),
nn.Linear(in_features=1024, out_features=4096),
nn.LeakyReLU(),
)
# unflatten section (e.g 4096 -> [256,4,4])
self.unflatten = nn.Unflatten(dim=1, unflattened_size=(256, 4, 4))
# deconvolution section ([256,4,4] -> [3,50,50])
self.decoder_conv = nn.Sequential(
# [256,4,4] -> [128,7,7]
nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.LeakyReLU(),
# [128,7,7] -> [64,13,13]
nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.LeakyReLU(),
# [64,13,13] -> [32,25,25]
nn.ConvTranspose2d(in_channels=64, out_channels=32, kernel_size=5, stride=2, padding=2),
nn.BatchNorm2d(32),
nn.LeakyReLU(),
# [32,25,25] -> [3,50,50]
nn.ConvTranspose2d(in_channels=32, out_channels=3, kernel_size=6, stride=2, padding=2),
)
def forward(self, x):
x = self.decoder_lin(x) # latent_size -> 4096
x = self.unflatten(x) # 4096 -> [256,4,4]
x = self.decoder_conv(x) # [256,4,4] -> [3,50,50]
x = torch.sigmoid(x)
return x
class Autoencoder(nn.Module):
def __init__(self, input_shape, latent_size):
super(Autoencoder, self).__init__()
self.input_shape = input_shape
self.latent_size = latent_size
self.encode = Encoder(input_size=input_shape, latent_size=latent_size)
self.decode = Decoder(output_size=input_shape, latent_size=latent_size)
def forward(self, x):
z = self.encode(x)
xhat = self.decode(z)
return xhat
class VAE(nn.Module):
def __init__(self, input_size, latent_size):
super(VAE, self).__init__()
self.input_size = input_size
self.latent_size = latent_size
self.register_buffer("prior_params", torch.zeros(torch.Size([1, 2*self.latent_size])))
self.encode = Encoder(input_size=input_size, latent_size=latent_size, vae=True)
self.decode = Decoder(output_size=input_size, latent_size=latent_size, vae=True)
def posterior(self, input_):
h = self.encode(input_)
mu, log_sigma = torch.chunk(h, chunks=2, dim=-1)
return ParamGaussian(mu=mu, log_sigma=log_sigma)
def prior(self, batch_size):
prior_params = self.prior_params.expand(batch_size, *self.prior_params.shape[-1:])
mu, log_sigma = torch.chunk(prior_params, chunks=2, dim=-1)
return ParamGaussian(mu=mu, log_sigma=log_sigma)
def observation_model(self, z):
xhat = self.decode(z)
return xhat
def sample_prior(self, batch_size):
latent_dist = self.prior(batch_size=batch_size)
z = latent_dist.rsample()
return self.observation_model(z), z
def forward(self, x):
batch_size = x.shape[0]
qz = self.posterior(input_=x)
pz = self.prior(batch_size=batch_size)
z = qz.rsample()
xhat = self.observation_model(z)
return {"pz":pz, "qz":qz, "z":z, "x":x, "xhat":xhat}
class CVAE(nn.Module):
def __init__(self, input_size, latent_size):
super(CVAE, self).__init__()
self.input_size = input_size
self.latent_size = latent_size
self.register_buffer("prior_params", torch.zeros(torch.Size([1, 2*self.latent_size])))
self.encode = Encoder(input_size=input_size, latent_size=latent_size, vae=True)
self.decode = Decoder(output_size=input_size, latent_size=latent_size+1)
def posterior(self, input_):
h = self.encode(input_)
mu, log_sigma = torch.chunk(h, chunks=2, dim=-1)
return ParamGaussian(mu=mu, log_sigma=log_sigma)
def prior(self, batch_size):
prior_params = self.prior_params.expand(batch_size, *self.prior_params.shape[-1:])
mu, log_sigma = torch.chunk(prior_params, chunks=2, dim=-1)
return ParamGaussian(mu=mu, log_sigma=log_sigma)
def observation_model(self, z):
xhat = self.decode(z)
return xhat
def sample_prior(self, batch_size, c):
latent_dist = self.prior(batch_size=batch_size)
z = latent_dist.rsample()
if z.is_cuda:
c = c*torch.unsqueeze(torch.ones((batch_size)),1).cuda()
else:
c = c*torch.unsqueeze(torch.ones((batch_size)),1)
z_c = torch.cat((z,c), dim=1)
return self.observation_model(z_c), z_c
def forward(self, x, c):
batch_size = x.shape[0]
qz = self.posterior(input_=x)
pz = self.prior(batch_size=batch_size)
z = qz.rsample()
c = torch.unsqueeze(c,dim=1)
z_c = torch.cat((z, c), dim=1).float()
xhat = self.observation_model(z_c)
return {"pz":pz, "qz":qz, "z":z, "z_c":z_c, "x":x, "xhat":xhat}