-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathANHASY.FORT10
783 lines (783 loc) · 28 KB
/
ANHASY.FORT10
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
C PROGRAM ANHASY
C**********************************************************************
C* NOTICE OF PROGRAM MODIFICATION *
C**********************************************************************
c Moved to PSI area on 2/4/89 by clj.
C**********************************************************************
C* BY: RICHARD REMINGTON SEARCH: C3-26-88 *
C* DATE: MARCH 26, 1988 *
C* REASON: MIGRATION TO RUN IN 7MB ON 9370 *
C**********************************************************************
C* LAST UPDATED ON SEPTEMBER 07, 1987 BY YUKIO YAMAGUCHI *
C**********************************************************************
SUBROUTINE ROVASY(ZETA,AXY,F3Q,EE,RVCNST)
C THE CALCULATION OF VIBRATION-ROTATION INTERACTION CONSTANTS
C FOR AN ASYMMETRIC TOP MOLECULE
IMPLICIT REAL*8 (A-H,O-Z)
CHARACTER*1 RAXIS
CHARACTER*25 RTYPE
DIMENSION ZETA(N3N,N3N,3),AXY(3,3,N3N)
DIMENSION F3Q(N3N,N3N,N3N),EE(N3N,N3N),RVCNST(NVIB,3)
COMMON/VIB101/NATOM,N3N,NATRI,ILIN,NVIB
COMMON/VIB102/ITHREE,IFOUR,N3TOT,N4TOT
COMMON/VIB103/PARA,WAVE,CONST,CYCL,CONV
COMMON/VIB106/ROTAA(3),ROTGC(3),ROTCM(3),ROTMH(3)
COMMON/VIB108/IAXIS(3),NDEG(150),NDAB(150,5),IMAG(150)
COMMON/VIB109/CLIMIT,FLIM1,FLIM2
COMMON/VIB203/IOFF(150),IPRNT
COMMON/VIB204/SQM(150),ROOT(150),FREQ(150)
COMMON/VIB205/IFREQ,NFRQ(150)
COMMON/VIB206/RAXIS(3),RTYPE(6)
COMMON/VIB209/SALP(3)
DATA PH,AVN / 6.626176D+00 , 6.022045D+00 /
DATA PI,CL / 3.1415926536D+00 , 2.99792458D+00 /
DATA A00,HALF,ONE,TWO / 0.0D+00 , 0.5D+00 , 1.0D+00 , 2.0D+00 /
DATA WLIMIT / 1.0D+00 /
DATA ZLIMIT / 1.0D-05 /
1 FORMAT(//,2X,' **************************************************'
1 /,2X,' ***THE VIBRATION-ROTATION INTERACTION CONSTANTS***'
2 /,2X,' **************************************************'
3 )
2 FORMAT(//,2X,' ZETA MATRIX, IABC = ',I5/)
3 FORMAT(//,2X,' F3(QI*QJ*QK) MATRIX (IN CM-1), IVIB = ',I5/)
4 FORMAT(//,2X,' AXY MATRIX, IVIB = ',I5/)
5 FORMAT(//,2X,' QVIB',5X,' IVIB',10X,' A',21X,' B',21X,' C'/
1 27X,' IN CM-1',15X,' IN CM-1',15X,' IN CM-1'/)
6 FORMAT(2X,I5,5X,I5,3X,F20.10,3X,F20.10,3X,F20.10)
7 FORMAT(//,2X,' PRINCIPAL MOMENTS OF INERTIA WITH ZERO-POINT VIBRAT
1IONAL CORRECTION'/
2 4X,5H AXIS,9X,11H IN AMU.A+2,9X,10H IN G.CM+2,10X,
3 8H IN CM-1,15X,7H IN MHZ/38X,8H (*D+39)/)
8 FORMAT(8X,A1,3X,3F20.10,F20.5)
9 FORMAT(//,2X,' ::::::::::::::::::::::::::::::::::::'/
1 2X,' :::CORIOLIS RESONANCE IS OBSERVED:::'/
2 2X,' ::::::::::::::::::::::::::::::::::::'/)
10 FORMAT(2X,' NUMBER OF OCCURENCES IS ',I5/
1 2X,' RESONANCE LIMIT IS SET TO ',F10.3,' CM-1'/)
C
WRITE(6,1)
RCONST=1.0D-01*PI*DSQRT(CL/(PH*AVN))
IAA=IAXIS(1)
IBB=IAXIS(2)
ICC=IAXIS(3)
NCORIO=0
C
IF(IPRNT.LE.2) GO TO 201
DO 101 IABC=1,3
WRITE(6,2) IABC
CALL MATOUT(ZETA(1,1,IABC),N3N,N3N,N3N,N3N,6)
101 CONTINUE
DO 103 III=1,NVIB
IVIB=NFRQ(III)
WRITE(6,3) IVIB
DO 102 I=1,NVIB
II=NFRQ(I)
DO 102 J=1,NVIB
JJ=NFRQ(J)
EE(I,J)=F3Q(II,JJ,IVIB)
102 CONTINUE
CALL ANHOUT(EE,N3N,N3N,NVIB,NVIB,6)
103 CONTINUE
DO 104 IVIB=1,NVIB
WRITE(6,4) IVIB
CALL MATOUT(AXY(1,1,IVIB),3,3,3,3,6)
104 CONTINUE
C
201 CONTINUE
DO 110 IVIB=1,NVIB
FRQI=FREQ(IVIB)
FRQI2=FRQI*FRQI
VALUA1=A00
VALUB1=A00
VALUC1=A00
DO 106 I=1,3
VALUA1=VALUA1+(AXY(IAA,IAXIS(I),IVIB)**2/ROTAA(I))*0.75D+00
VALUB1=VALUB1+(AXY(IBB,IAXIS(I),IVIB)**2/ROTAA(I))*0.75D+00
VALUC1=VALUC1+(AXY(ICC,IAXIS(I),IVIB)**2/ROTAA(I))*0.75D+00
106 CONTINUE
VALUA2=A00
VALUB2=A00
VALUC2=A00
VALUA3=A00
VALUB3=A00
VALUC3=A00
DO 107 JVIB=1,NVIB
FRQJ=FREQ(JVIB)
FRQJ2=FRQJ*FRQJ
IF(IVIB.EQ.JVIB) GO TO 205
IF(DABS(FRQI-FRQJ).LE.CLIMIT) GO TO 203
FACT2=(FRQI2*3.0D+00+FRQJ2)/(FRQI2-FRQJ2)
GO TO 204
C////////////////////////////////////
C///CORIOLIS RESONANCE CORRECTIONS///
C////////////////////////////////////
203 CONTINUE
FACT2=-(0.5D+00*(FRQI-FRQJ)**2)/(FRQJ*(FRQI+FRQJ))
IF(DABS(ZETA(IVIB,JVIB,IAA)).GT.ZLIMIT) THEN
NCORIO=NCORIO+1
END IF
IF(DABS(ZETA(IVIB,JVIB,IBB)).GT.ZLIMIT) THEN
NCORIO=NCORIO+1
END IF
IF(DABS(ZETA(IVIB,JVIB,ICC)).GT.ZLIMIT) THEN
NCORIO=NCORIO+1
END IF
C///////////////////////////////
C///END OF CORIOLIS RESONANCE///
C///////////////////////////////
204 CONTINUE
VALUA2=VALUA2+(ZETA(IVIB,JVIB,IAA)**2)*FACT2
VALUB2=VALUB2+(ZETA(IVIB,JVIB,IBB)**2)*FACT2
VALUC2=VALUC2+(ZETA(IVIB,JVIB,ICC)**2)*FACT2
205 CONTINUE
FACT3=(FRQI*F3Q(IVIB,IVIB,JVIB)*RCONST)/(FRQJ**(1.5D+00))
VALUA3=VALUA3+AXY(IAA,IAA,JVIB)*FACT3
VALUB3=VALUB3+AXY(IBB,IBB,JVIB)*FACT3
VALUC3=VALUC3+AXY(ICC,ICC,JVIB)*FACT3
107 CONTINUE
ROTA=-(VALUA1+VALUA2+VALUA3)*(ROTCM(1)*ROTCM(1)*TWO)/FRQI
ROTB=-(VALUB1+VALUB2+VALUB3)*(ROTCM(2)*ROTCM(2)*TWO)/FRQI
ROTC=-(VALUC1+VALUC2+VALUC3)*(ROTCM(3)*ROTCM(3)*TWO)/FRQI
RVCNST(IVIB,1)=ROTA
RVCNST(IVIB,2)=ROTB
RVCNST(IVIB,3)=ROTC
110 CONTINUE
C
C CALCULATE THE ROTATIONAL CONSTANTS
C WITH ZERO-POINT VIBRATIONAL CORRECTION
CALL ZERO(SALP,3)
WRITE(6,5)
DO 115 III=1,NVIB
IVIB=NFRQ(III)
ROTA=RVCNST(IVIB,1)
ROTB=RVCNST(IVIB,2)
ROTC=RVCNST(IVIB,3)
SALP(1)=SALP(1)+ROTA
SALP(2)=SALP(2)+ROTB
SALP(3)=SALP(3)+ROTC
WRITE(6,6) III,IVIB,ROTA,ROTB,ROTC
115 CONTINUE
WRITE(6,7)
DO 116 I=1,3
PB=ROTCM(I)-SALP(I)*HALF
PT=CONST/PB
PA=PT*PARA
PC=CYCL/PT
WRITE(6,8) RAXIS(I),PT,PA,PB,PC
116 CONTINUE
C
IF(NCORIO.NE.0) THEN
WRITE(6,9)
WRITE(6,10) NCORIO,CLIMIT
END IF
C
RETURN
END
SUBROUTINE CENTAS(F3Q,EE)
C THE CALCULATION OF CENTRIFUGAL DISTORTION CONSTANTS
C FOR AN ASYMMETRIC TOP MOLECULE
IMPLICIT REAL*8 (A-H,O-Z)
CHARACTER*1 RAXIS
CHARACTER*25 RTYPE
DIMENSION RCENT(3),RTOTC(3),RTOTM(3)
DIMENSION F3Q(N3N,N3N,N3N),EE(N3N,N3N)
COMMON/VIB101/NATOM,N3N,NATRI,ILIN,NVIB
COMMON/VIB102/ITHREE,IFOUR,N3TOT,N4TOT
COMMON/VIB103/PARA,WAVE,CONST,CYCL,CONV
COMMON/VIB106/ROTAA(3),ROTGC(3),ROTCM(3),ROTMH(3)
COMMON/VIB108/IAXIS(3),NDEG(150),NDAB(150,5),IMAG(150)
COMMON/VIB110/ISIGMA
COMMON/VIB203/IOFF(150),IPRNT
COMMON/VIB205/IFREQ,NFRQ(150)
COMMON/VIB206/RAXIS(3),RTYPE(6)
COMMON/VIB207/TABCD(3,3,3,3),PABC(3,3,3)
COMMON/VIB208/TAABB(3,3),TABAB(3,3)
COMMON/VIB209/SALP(3)
DATA CL / 2.99792458D+00 /
DATA A00,HALF,ONE,TWO / 0.0D+00 , 0.5D+00 , 1.0D+00 , 2.0D+00 /
1 FORMAT(//,2X,' ******************************************'/
1 2X,' ***THE CENTRIFUGAL DISTORTION CONSTANTS***'/
2 2X,' ******************************************')
2 FORMAT(//,2X,' F3(QI*QJ*QK) MATRIX (IN CM-1), IVIB = ',I5/)
3 FORMAT(//,2X,' TAABB MATRIX FROM BXY MATRICES (IN CM-1)'/)
4 FORMAT(//,2X,' TABAB MATRIX FROM BXY MATRICES (IN CM-1)'/)
5 FORMAT(//,2X,' FOR AN ASYMMETRIC TOP MOLECULE'/
1 2X,' DJ = ',F20.10,' D-06 CM-1',
2 10X,' DJ = ',F20.10,' MHZ'/
3 2X,' DK = ',F20.10,' D-06 CM-1',
4 10X,' DK = ',F20.10,' MHZ'/
5 2X,' DJK = ',F20.10,' D-06 CM-1',
6 10X,' DJK = ',F20.10,' MHZ'/
7 2X,' R5 = ',F20.10,' D-06 CM-1',
8 10X,' R5 = ',F20.10,' MHZ'/
9 2X,' R6 = ',F20.10,' D-06 CM-1',
A 10X,' R6 = ',F20.10,' MHZ'/
B 2X,' DELJ = ',F20.10,' D-06 CM-1',
C 10X,' DELJ = ',F20.10,' MHZ'/)
6 FORMAT(//,2X,' PRINCIPAL MOMENTS OF INERTIA AT EQUILIBRIUM GEOMETR
1Y'/
2 4X,5H AXIS,9X,11H IN AMU.A+2,9X,10H IN G.CM+2,10X,
3 8H IN CM-1,15X,7H IN MHZ/38X,8H (*D+39)/)
7 FORMAT(8X,A1,3X,3F20.10,F20.5)
8 FORMAT(//,2X,' PRINCIPAL MOMENTS OF INERTIA WITH ZERO-POINT VIBRAT
1IONAL CORRECTION'/
2 4X,5H AXIS,9X,11H IN AMU.A+2,9X,10H IN G.CM+2,10X,
3 8H IN CM-1,15X,7H IN MHZ/38X,8H (*D+39)/)
9 FORMAT(//,2X,' PRINCIPAL MOMENTS OF INERTIA WITH ZERO-POINT VIBRAT
1IONAL AND CENTRIFUGAL DISTORTION CORRECTIONS'/
2 4X,5H AXIS,9X,11H IN AMU.A+2,9X,10H IN G.CM+2,10X,
3 8H IN CM-1,15X,7H IN MHZ/38X,8H (*D+39)/)
10 FORMAT(/,2X,' SIGMA (0'') = ',F20.10/
1 2X,' SIGMA (E) = ',F20.10/)
11 FORMAT(/,2X,' SIGMA (0'') WILL BE USED TO CALCULATE CENTRIFUGAL DI
1STORTION CONSTANTS'/)
12 FORMAT(/,2X,' SIGMA (E) WILL BE USED TO CALCULATE CENTRIFUGAL DIST
1ORTION CONSTANTS'/)
13 FORMAT(/,2X,' A (TILDE) = ',F20.10,' CM-1',
1 15X,' A (TILDE) = ',F20.10,' MHZ'/
2 2X,' B (TILDE) = ',F20.10,' CM-1',
3 15X,' B (TILDE) = ',F20.10,' MHZ'/
4 2X,' C (TILDE) = ',F20.10,' CM-1',
5 15X,' C (TILDE) = ',F20.10,' MHZ'/)
14 FORMAT(//,2X,' FOR AN ASYMMETRIC TOP MOLECULE'/
1 2X,' DELTA J = ',F20.10,' D-06 CM-1',
2 10X,' DELTA J = ',F20.10,' MHZ'/
3 2X,' DELTA K = ',F20.10,' D-06 CM-1',
4 10X,' DELTA K = ',F20.10,' MHZ'/
5 2X,' DELTA JK = ',F20.10,' D-06 CM-1',
6 10X,' DELTA JK = ',F20.10,' MHZ'/
7 2X,' DELK = ',F20.10,' D-06 CM-1',
8 10X,' DELK = ',F20.10,' MHZ'/
9 2X,' DELJ = ',F20.10,' D-06 CM-1',
A 10X,' DELJ = ',F20.10,' MHZ'/)
15 FORMAT(//,2X,' FOR AN ASYMMETRIC TOP MOLECULE'/
1 2X,' DDJ = ',F20.10,' D-06 CM-1',
2 10X,' DDJ = ',F20.10,' MHZ'/
3 2X,' DDK = ',F20.10,' D-06 CM-1',
4 10X,' DDK = ',F20.10,' MHZ'/
5 2X,' DDJK = ',F20.10,' D-06 CM-1',
6 10X,' DDJK = ',F20.10,' MHZ'/
7 2X,' DDWJ = ',F20.10,' D-06'/
8 2X,' DDWK = ',F20.10,' D-06'/)
16 FORMAT(//,2X,' FOR AN ASYMMETRIC TOP MOLECULE (S111=0)'/
1 2X,' HJ = ',F20.10,' D-06 CM-1',
2 10X,' HJ = ',F20.10,' MHZ'/
3 2X,' HJK = ',F20.10,' D-06 CM-1',
4 10X,' HJK = ',F20.10,' MHZ'/
5 2X,' HKJ = ',F20.10,' D-06 CM-1',
6 10X,' HKJ = ',F20.10,' MHZ'/
7 2X,' HK = ',F20.10,' D-06 CM-1',
8 10X,' HK = ',F20.10,' MHZ'/
9 2X,' HHJ = ',F20.10,' D-06 CM-1',
A 10X,' HHJ = ',F20.10,' MHZ'/
B 2X,' HHJK = ',F20.10,' D-06 CM-1',
C 10X,' HHJK = ',F20.10,' MHZ'/
D 2X,' HHK = ',F20.10,' D-06 CM-1',
E 10X,' HHK = ',F20.10,' MHZ'/)
17 FORMAT(//,2X,' FOR AN ASYMMETRIC TOP MOLECULE (S111=-4*R6/(B-C))'/
1 2X,' HJ = ',F20.10,' D-06 CM-1',
2 10X,' HJ = ',F20.10,' MHZ'/
3 2X,' HJK = ',F20.10,' D-06 CM-1',
4 10X,' HJK = ',F20.10,' MHZ'/
5 2X,' HKJ = ',F20.10,' D-06 CM-1',
6 10X,' HKJ = ',F20.10,' MHZ'/
7 2X,' HK = ',F20.10,' D-06 CM-1',
8 10X,' HK = ',F20.10,' MHZ'/
9 2X,' HHJ = ',F20.10,' D-06 CM-1',
A 10X,' HHJ = ',F20.10,' MHZ'/
B 2X,' HHJK = ',F20.10,' D-06 CM-1',
C 10X,' HHJK = ',F20.10,' MHZ'/
D 2X,' HHK = ',F20.10,' D-06 CM-1',
E 10X,' HHK = ',F20.10,' MHZ'/)
C
WRITE(6,1)
C ELEMENTS OF F3Q ARE IN CM-1
IF(IPRNT.LE.2) GO TO 201
DO 102 III=1,NVIB
IVIB=NFRQ(III)
WRITE(6,2) IVIB
DO 101 I=1,NVIB
II=NFRQ(I)
DO 101 J=1,NVIB
JJ=NFRQ(J)
EE(I,J)=F3Q(II,JJ,IVIB)
101 CONTINUE
CALL ANHOUT(EE,N3N,N3N,NVIB,NVIB,6)
102 CONTINUE
C
201 CONTINUE
DO 103 I=1,3
DO 103 J=1,3
TAABB(I,J)=TABCD(I,I,J,J)
TABAB(I,J)=TABCD(I,J,I,J)
103 CONTINUE
IF(IPRNT.LE.2) GO TO 202
WRITE(6,3)
CALL MATOUT(TAABB,3,3,3,3,6)
WRITE(6,4)
CALL MATOUT(TABAB,3,3,3,3,6)
C
C FOR AN ASYMMETRIC TOP MOLECULE
202 CONTINUE
IAA=IAXIS(1)
IBB=IAXIS(2)
ICC=IAXIS(3)
C
DJ=-(TAABB(IBB,IBB)*3.0D+00+TAABB(ICC,ICC)*3.0D+00
1 +TAABB(IBB,ICC)*2.0D+00+TABAB(IBB,ICC)*4.0D+00)/32.0D+00
DK=DJ-(TAABB(IAA,IAA)-TAABB(IAA,IBB)-TAABB(ICC,IAA)
1 -TABAB(IAA,IBB)*2.0D+00-TABAB(ICC,IAA)*2.0D+00)/4.0D+00
DJK=-DJ-DK-TAABB(IAA,IAA)/4.0D+00
R5=-(TAABB(IBB,IBB)-TAABB(ICC,ICC)
1 -TAABB(IAA,IBB)*2.0D+00-TABAB(IAA,IBB)*4.0D+00
2 +TAABB(ICC,IAA)*2.0D+00+TABAB(ICC,IAA)*4.0D+00)/32.0D+00
R6=(TAABB(IBB,IBB)+TAABB(ICC,ICC)
1 -TAABB(IBB,ICC)*2.0D+00-TABAB(IBB,ICC)*4.0D+00)/64.0D+00
DELJ=-(TAABB(IBB,IBB)-TAABB(ICC,ICC))/16.0D+00
DJCM=DJ*1.0D+06
DKCM=DK*1.0D+06
DJKCM=DJK*1.0D+06
R5CM=R5*1.0D+06
R6CM=R6*1.0D+06
DELJCM=DELJ*1.0D+06
DJMH=DJ*CL*1.0D+04
DKMH=DK*CL*1.0D+04
DJKMH=DJK*CL*1.0D+04
R5MH=R5*CL*1.0D+04
R6MH=R6*CL*1.0D+04
DELJMH=DELJ*CL*1.0D+04
WRITE(6,5) DJCM,DJMH,DKCM,DKMH,DJKCM,DJKMH,R5CM,R5MH,R6CM,R6MH,
1 DELJCM,DELJMH
C
C ROTATIONAL CONSTANTS WITH CENTRIFUGAL DISTORTION CORRECTIONS
WRITE(6,6)
DO 105 I=1,3
PB=ROTCM(I)
PT=CONST/PB
PA=PT*PARA
PC=CYCL/PT
WRITE(6,7) RAXIS(I),PT,PA,PB,PC
105 CONTINUE
WRITE(6,8)
DO 106 I=1,3
PB=ROTCM(I)-SALP(I)*HALF
PT=CONST/PB
PA=PT*PARA
PC=CYCL/PT
WRITE(6,7) RAXIS(I),PT,PA,PB,PC
106 CONTINUE
WRITE(6,9)
RCENT(1)=(TABAB(IBB,ICC)*3.0D+00-TABAB(ICC,IAA)*TWO
1 -TABAB(IAA,IBB)*TWO)/4.0D+00
RCENT(2)=(TABAB(ICC,IAA)*3.0D+00-TABAB(IAA,IBB)*TWO
1 -TABAB(IBB,ICC)*TWO)/4.0D+00
RCENT(3)=(TABAB(IAA,IBB)*3.0D+00-TABAB(IBB,ICC)*TWO
1 -TABAB(ICC,IAA)*TWO)/4.0D+00
C
DO 107 I=1,3
PB=ROTCM(I)-SALP(I)*HALF+RCENT(I)
RTOTC(I)=PB
PT=CONST/PB
PA=PT*PARA
PC=CYCL/PT
RTOTM(I)=PC
WRITE(6,7) RAXIS(I),PT,PA,PB,PC
107 CONTINUE
C
C ASYMMETRY PARAMETER
C####################################################
C# NOTE : ##
C# IF(ISIGMA.EQ.0) THEN SIGMA IS CALCULATED ##
C# USING A(0') , B(0') AND C(0') CONSTANTS ##
C# ##
C# IF(ISIGMA.NE.0) THEN SIGMA IS CALCULATED ##
C# USING A(E) , B(E) AND C(E) CONSTANTS ##
C# ##
C####################################################
SIGMA=(RTOTC(IAA)*TWO-RTOTC(IBB)-RTOTC(ICC))
1 /(RTOTC(IBB)-RTOTC(ICC))
SIGMB=(ROTCM(IAA)*TWO-ROTCM(IBB)-ROTCM(ICC))
1 /(ROTCM(IBB)-ROTCM(ICC))
WRITE(6,10) SIGMA,SIGMB
IF(ISIGMA.EQ.0) THEN
WRITE(6,11)
ELSE
SIGMA=SIGMB
WRITE(6,12)
END IF
C
C DEFINE ATILDE , BTILDE AND CTILDE
ATILDE=RTOTC(IAA)+16.0D+00*R6
BTILDE=RTOTC(IBB)-8.0D+00*R6*(SIGMA+1.0D+00)
CTILDE=RTOTC(ICC)+8.0D+00*R6*(SIGMA-1.0D+00)
C*************************
C* NOTE : ISIGMA.NE.0 **
C*************************
IF(ISIGMA.NE.0) THEN
ATILDE=ROTCM(IAA)+16.0D+00*R6
BTILDE=ROTCM(IBB)-8.0D+00*R6*(SIGMA+1.0D+00)
CTILDE=ROTCM(ICC)+8.0D+00*R6*(SIGMA-1.0D+00)
END IF
ATILDM=ATILDE*CL*1.0D+04
BTILDM=BTILDE*CL*1.0D+04
CTILDM=CTILDE*CL*1.0D+04
WRITE(6,13) ATILDE,ATILDM,BTILDE,BTILDM,CTILDE,CTILDM
C
C DEFINE CETRIFUGAL CONSTANTS (DELTA ETC.)
DLTJCM=DJCM-R6CM*2.0D+00
DLTKCM=DKCM-R6CM*10.0D+00
DLTJKC=DJKCM+R6CM*12.0D+00
DELK=-R5*2.0D+00-4.0D+00*R6*SIGMA
DELKCM=DELK*1.0D+06
DLTJMH=DJMH-R6MH*2.0D+00
DLTKMH=DKMH-R6MH*10.0D+00
DLTJKM=DJKMH+R6MH*12.0D+00
DELKMH=DELK*CL*1.0D+04
WRITE(6,14) DLTJCM,DLTJMH,DLTKCM,DLTKMH,DLTJKC,DLTJKM,
1 DELKCM,DELKMH,DELJCM,DELJMH
C
C CALCULATE D(J) , D(JK) , D(K) , D(WJ) , AND D(WK)
TILMM=BTILDE-CTILDE
TILBC=(BTILDE+CTILDE)/TILMM
TILAA=(2.0D+00*ATILDE-BTILDE-CTILDE)/TILMM
DDJCM=DLTJCM-DELJCM*2.0D+00*TILBC
DDKCM=DLTKCM-DELKCM*2.0D+00*TILAA
DDJKCM=DLTJKC-DELKCM*2.0D+00*TILBC-DELJCM*2.0D+00*TILAA
DDWJ=(DELJ*4.0D+00*1.0D+06)/TILMM
DDWK=(DELK*4.0D+00*1.0D+06)/TILMM
DDJMH=DLTJMH-DELJMH*2.0D+00*TILBC
DDKMH=DLTKMH-DELKMH*2.0D+00*TILAA
DDJKMH=DLTJKM-DELKMH*2.0D+00*TILBC-DELJMH*2.0D+00*TILAA
WRITE(6,15) DDJCM,DDJMH,DDKCM,DDKMH,DDJKCM,DDJKMH,
1 DDWJ,DDWK
C
C CALCULATE THE SEXTIC DISTIRTION CONSTANTS
P600=(PABC(IBB,IBB,IBB)+PABC(ICC,ICC,ICC))*(5.0D+00/16.0D+00)
1 +(PABC(IBB,IBB,ICC)+PABC(ICC,ICC,IBB))/8.0D+00
P420=(PABC(IAA,IBB,IBB)+PABC(IAA,ICC,ICC))*(3.0D+00/4.0D+00)
1 +PABC(IAA,IBB,ICC)/4.0D+00-P600*3.0D+00
P240=PABC(IAA,IAA,IBB)+PABC(IAA,IAA,ICC)-P420*TWO-P600*3.0D+00
P060=PABC(IAA,IAA,IAA)-P240-P420-P600
P402=(PABC(IBB,IBB,IBB)-PABC(ICC,ICC,ICC))*(15.0D+00/64.0D+00)
1 +(PABC(IBB,IBB,ICC)-PABC(ICC,ICC,IBB))/32.0D+00
P222=(PABC(IAA,IBB,IBB)-PABC(IAA,ICC,ICC))*HALF-P402*TWO
P042=(PABC(IAA,IAA,IBB)-PABC(IAA,IAA,ICC))*HALF-P222-P402
P204=(PABC(IBB,IBB,IBB)+PABC(ICC,ICC,ICC))*(3.0D+00/32.0D+00)
1 -(PABC(IBB,IBB,ICC)+PABC(ICC,ICC,IBB))/16.0D+00
P024=(PABC(IAA,IBB,IBB)+PABC(IAA,ICC,ICC)-PABC(IAA,IBB,ICC))
1 /8.0D+00-P204
P006=(PABC(IBB,IBB,IBB)-PABC(ICC,ICC,ICC))/64.0D+00
1 -(PABC(IBB,IBB,ICC)-PABC(ICC,ICC,IBB))/32.0D+00
C
C DEFINE DIFFERENCES IN ROTATIONAL CONSTANS
D2ABC=RTOTC(IAA)*TWO-RTOTC(IBB)-RTOTC(ICC)
DBC=RTOTC(IBB)-RTOTC(ICC)
C*************************
C* NOTE : ISIGMA.NE.0 **
C*************************
IF(ISIGMA.NE.0) THEN
D2ABC=ROTCM(IAA)*TWO-ROTCM(IBB)-ROTCM(ICC)
DBC=ROTCM(IBB)-ROTCM(ICC)
END IF
C
C S111=0
SIGMA2=SIGMA*SIGMA
S111=A00
S111SQ=S111*S111
HJ=P600+P204*TWO
HJK=P420-P204*12.0D+00+P024*TWO+P006*SIGMA*16.0D+00
1 -(R5-SIGMA*R6*TWO)*S111*16.0D+00
2 +D2ABC*S111SQ*8.0D+00
HKJ=P240+P420*(10.0D+00/3.0D+00)-P204*30.0D+00
1 -HJK*(10.0D+00/3.0D+00)
HK=P060-P420*(7.0D+00/3.0D+00)+P204*28.0D+00+HJK*(7.0D+00/3.0D+00)
HHJ=P402+P006
HHJK=P222-P006*10.0D+00+P204*SIGMA*4.0D+00
1 +(DJK-SIGMA*DELJ*TWO-R6*4.0D+00)*S111*TWO
2 -DBC*S111SQ*4.0D+00
HHK=P042+P024*(SIGMA*4.0D+00/3.0D+00)
1 +(9.0D+00+SIGMA2*32.0D+00/3.0D+00)*P006
2 +(DK-(SIGMA*R5*TWO)/3.0D+00+TWO*(ONE+8.0D+00*SIGMA2/3.0D+00)*R6
3 )*S111*4.0D+00+(6.0D+00+10.0D+00*SIGMA2/3.0D+00)
4 *DBC*S111SQ
C
HJCM=HJ*1.0D+06
HJKCM=HJK*1.0D+06
HKJCM=HKJ*1.0D+06
HKCM=HK*1.0D+06
HHJCM=HHJ*1.0D+06
HHJKCM=HHJK*1.0D+06
HHKCM=HHK*1.0D+06
HJMH=HJ*CL*1.0D+04
HJKMH=HJK*CL*1.0D+04
HKJMH=HKJ*CL*1.0D+04
HKMH=HK*CL*1.0D+04
HHJMH=HHJ*CL*1.0D+04
HHJKMH=HHJK*CL*1.0D+04
HHKMH=HHK*CL*1.0D+04
WRITE(6,16) HJCM,HJMH,HJKCM,HJKMH,HKJCM,HKJMH,HKCM,HKMH,
1 HHJCM,HHJMH,HHJKCM,HHJKMH,HHKCM,HHKMH
C
C S111=-(4*R6)/(B-C)
SIGMA2=SIGMA*SIGMA
S111=-(4.0D+00*R6)/DBC
S111SQ=S111*S111
HJ=P600+P204*TWO
HJK=P420-P204*12.0D+00+P024*TWO+P006*SIGMA*16.0D+00
1 -(R5-SIGMA*R6*TWO)*S111*16.0D+00
2 +D2ABC*S111SQ*8.0D+00
HKJ=P240+P420*(10.0D+00/3.0D+00)-P204*30.0D+00
1 -HJK*(10.0D+00/3.0D+00)
HK=P060-P420*(7.0D+00/3.0D+00)+P204*28.0D+00+HJK*(7.0D+00/3.0D+00)
HHJ=P402+P006
HHJK=P222-P006*10.0D+00+P204*SIGMA*4.0D+00
1 +(DJK-SIGMA*DELJ*TWO-R6*4.0D+00)*S111*TWO
2 -DBC*S111SQ*4.0D+00
HHK=P042+P024*(SIGMA*4.0D+00/3.0D+00)
1 +(9.0D+00+SIGMA2*32.0D+00/3.0D+00)*P006
2 +(DK-(SIGMA*R5*TWO)/3.0D+00+TWO*(ONE+8.0D+00*SIGMA2/3.0D+00)*R6
3 )*S111*4.0D+00+(6.0D+00+10.0D+00*SIGMA2/3.0D+00)
4 *DBC*S111SQ
C
HJCM=HJ*1.0D+06
HJKCM=HJK*1.0D+06
HKJCM=HKJ*1.0D+06
HKCM=HK*1.0D+06
HHJCM=HHJ*1.0D+06
HHJKCM=HHJK*1.0D+06
HHKCM=HHK*1.0D+06
HJMH=HJ*CL*1.0D+04
HJKMH=HJK*CL*1.0D+04
HKJMH=HKJ*CL*1.0D+04
HKMH=HK*CL*1.0D+04
HHJMH=HHJ*CL*1.0D+04
HHJKMH=HHJK*CL*1.0D+04
HHKMH=HHK*CL*1.0D+04
WRITE(6,17) HJCM,HJMH,HJKCM,HJKMH,HKJCM,HKJMH,HKCM,HKMH,
1 HHJCM,HHJMH,HHJKCM,HHJKMH,HHKCM,HHKMH
C
RETURN
END
SUBROUTINE ASYTOP(ZETA,F3Q,F4Q,XIJ)
C THE ANHARMONICITY CONTSTANTS FOR AN ASYMMETRIC TOP
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION ZETA(N3N,N3N,3)
DIMENSION F3Q(N3N,N3N,N3N),F4Q(N3N,N3N,N3N,N3N)
DIMENSION XIJ(N3N,N3N)
COMMON/VIB101/NATOM,N3N,NATRI,ILIN,NVIB
COMMON/VIB106/ROTAA(3),ROTGC(3),ROTCM(3),ROTMH(3)
COMMON/VIB108/IAXIS(3),NDEG(150),NDAB(150,5),IMAG(150)
COMMON/VIB109/CLIMIT,FLIM1,FLIM2
COMMON/VIB203/IOFF(150),IPRNT
COMMON/VIB204/SQM(150),ROOT(150),FREQ(150)
COMMON/VIB205/IFREQ,NFRQ(150)
DATA A00,ONE / 0.0D+00 , 1.0D+00 /
DATA WLIMIT / 1.0D+00 /
DATA PLIMIT / 1.0D-05 /
1 FORMAT(//,2X,' ********************************************'
1 /,2X,' ***THE VIBRATIONAL ANHARMONICTY CONSTANTS***'
2 /,2X,' ********************************************')
2 FORMAT(//,2X,' ANHARMONIC CONSTANTS IN CM-1'/
1 2X,' IVIB',3X,' JVIB',8X,' FREQ(I)',5X,' FREQ(J)',
2 7X,' VALU1',7X,' VALU2',7X,' VALU3',7X,' VALU4',
3 7X,' XIJ'/)
3 FORMAT(2X,I5,3X,I5,3X,7(F13.3))
4 FORMAT(//,2X,' ANHARMONIC CONSTANTS IN CM-1'/
1 4X,' QI',5X,' QJ',8X,' FREQ(I)',5X,' FREQ(J)',
2 7X,' XIJ'/)
5 FORMAT(2X,I5,3X,I5,3X,3(F13.3))
6 FORMAT(//,2X,' THEORETICAL FREQUENCIES IN CM-1'/
1 2X,' NO.',9X,' HARMONIC',14X,' DELTA',
2 13X,' FUNDAMENTAL'/)
7 FORMAT(2X,I5,4X,F13.3,7X,F13.3,12X,F13.3)
8 FORMAT(//,2X,' :::::::::::::::::::::::::::::::::::::::::::::::'/
1 2X,' :::ANHARMONIC RESONANCE (TYPE I) IS OBSERVED:::'/
2 2X,' :::::::::::::::::::::::::::::::::::::::::::::::'/)
9 FORMAT(//,2X,' ::::::::::::::::::::::::::::::::::::::::::::::::'/
1 2X,' :::ANHARMONIC RESONANCE (TYPE II) IS OBSERVED:::'/
2 2X,' ::::::::::::::::::::::::::::::::::::::::::::::::'/)
10 FORMAT(2X,' NUMBER OF OCCURENCES IS ',I5/
1 2X,' RESONANCE LIMIT IS SET TO ',F10.3,' CM-1'/)
C
C:::::::::::::::::::::::::::::::::::::::
C:::CALCULATE ANHARMONICITY CONSTANTS:::
C:::::::::::::::::::::::::::::::::::::::
IANH1=0
IANH2=0
C
WRITE(6,1)
IF(IPRNT.GT.2)
*WRITE(6,2)
DO 110 IVIB=1,NVIB
FRQI=FREQ(IVIB)
FRQI2=FRQI*FRQI
DO 110 JVIB=1,NVIB
FRQJ=FREQ(JVIB)
FRQJ2=FRQJ*FRQJ
C
VALU1=A00
VALU2=A00
VALU3=A00
VALU4=A00
XRS=A00
IF(DABS(FRQI).LE.WLIMIT) GO TO 210
IF(DABS(FRQJ).LE.WLIMIT) GO TO 210
IF(IVIB.NE.JVIB) GO TO 205
C
C++++++++++++++++++++++++
C+++DIAGONAL CONSTANTS+++
C++++++++++++++++++++++++
VALU1=F4Q(IVIB,IVIB,IVIB,IVIB)
DO 101 KVIB=1,NVIB
FRQK=FREQ(KVIB)
IF(DABS(FRQK).LE.WLIMIT) GO TO 101
FRQK2=FRQK*FRQK
FAC=F3Q(IVIB,IVIB,KVIB)
FACT=FAC*FAC
IF(DABS(FRQI+FRQI-FRQK).LE.FLIM1) GO TO 201
DNUM=FRQI2*8.0D+00-FRQK2*3.0D+00
DENM=FRQI2*4.0D+00-FRQK2
VALU2=VALU2+(DNUM*FACT)/(FRQK*DENM)
C***********************************************************************
C***FOLLWOING CODES ARE FOR AN ALTERNATE EXPRESSION *
C***THEY ARE TESTED TO GIVE THE SAME RESUTLS *
C***********************************************************************
C* DNUM=ONE/((FRQI+FRQI+FRQK)*2.0D+00)-ONE/((FRQI+FRQI-FRQK)*2.0D+00)
C* 1 +2.0D+00/FRQK *
C* VALU2=VALU2+(DNUM*FACT) *
C***********************************************************************
GO TO 101
C/////////////////////////////////
C///FERMI RESONANCE CORRECTIONS///
C/////////////////////////////////
201 CONTINUE
DNUM=ONE/((FRQI+FRQI+FRQK)*2.0D+00)+2.0D+00/FRQK
IF(DABS(FAC).GT.PLIMIT) THEN
IANH1=IANH1+1
END IF
VALU2=VALU2+FACT*DNUM
C////////////////////////////
C///END OF FERMI RESONANCE///
C////////////////////////////
101 CONTINUE
XRS=(VALU1-VALU2)/16.0D+00
GO TO 210
C
C++++++++++++++++++++++++++++
C+++OFF-DIAGONAL CONSTANTS+++
C++++++++++++++++++++++++++++
205 CONTINUE
VALU1=F4Q(IVIB,IVIB,JVIB,JVIB)
DO 102 KVIB=1,NVIB
FRQK=FREQ(KVIB)
IF(DABS(FRQK).LE.WLIMIT) GO TO 102
FRQK2=FRQK*FRQK
WPPP=FRQI+FRQJ+FRQK
WPPM=FRQI+FRQJ-FRQK
WPMP=FRQI-FRQJ+FRQK
WPMM=FRQI-FRQJ-FRQK
DIJK=WPPP*WPPM*WPMP*WPMM
DNUM2=F3Q(IVIB,IVIB,KVIB)*F3Q(KVIB,JVIB,JVIB)
VALU2=VALU2+DNUM2/FRQK
FAC=F3Q(IVIB,JVIB,KVIB)
FACT=FAC*FAC
IF(DABS(WPPM).LE.FLIM2) GO TO 206
IF(DABS(WPMP).LE.FLIM2) GO TO 207
IF(DABS(WPMM).LE.FLIM2) GO TO 208
DNUM3=(FRQK2-FRQI2-FRQJ2)*FRQK
VALU3=VALU3+(DNUM3*FACT)/DIJK
C***********************************************************************
C***FOLLOWING CODES ARE FOR AN ALTERNATE EXPRESSION *
C***THEY ARE TESTED TO GIVE THE SAME RESULTS *
C***********************************************************************
C* DNUM3=ONE/WPPP-ONE/WPPM+ONE/WPMP-ONE/WPMM *
C* VALU3=VALU3+(DNUM3*FACT)/4.0D+00 *
C***********************************************************************
GO TO 102
C/////////////////////////////////
C///FERMI RESONANCE CORRECTIONS///
C/////////////////////////////////
C WI+WJ=WK
206 CONTINUE
DNUM3=ONE/WPPP+ONE/WPMP-ONE/WPMM
IF(DABS(FAC).GT.PLIMIT) THEN
IANH2=IANH2+1
END IF
VALU3=VALU3+(DNUM3*FACT)/4.0D+00
GO TO 102
C WI+WK=WJ
207 CONTINUE
DNUM3=ONE/WPPP-ONE/WPPM-ONE/WPMM
IF(DABS(FAC).GT.PLIMIT) THEN
IANH2=IANH2+1
END IF
VALU3=VALU3+(DNUM3*FACT)/4.0D+00
GO TO 102
C WJ+WK=WI
208 CONTINUE
DNUM3=ONE/WPPP-ONE/WPPM+ONE/WPMP
IF(DABS(FAC).GT.PLIMIT) THEN
IANH2=IANH2+1
END IF
VALU3=VALU3+(DNUM3*FACT)/4.0D+00
C////////////////////////////
C///END OF FERMI RESONANCE///
C////////////////////////////
102 CONTINUE
ZFACT=A00
DO 103 IABC=1,3
II=IAXIS(IABC)
ZET=ZETA(IVIB,JVIB,II)
ZFACT=ZFACT+ZET*ZET*ROTCM(IABC)
103 CONTINUE
VALU4=(FRQI/FRQJ+FRQJ/FRQI)*ZFACT
XRS=(VALU1-VALU2)/4.0D+00-VALU3/2.0D+00+VALU4
C
210 CONTINUE
XIJ(IVIB,JVIB)=XRS
IF(IPRNT.LE.2) GO TO 110
WRITE(6,3) IVIB,JVIB,FRQI,FRQJ,VALU1,VALU2,VALU3,VALU4,XRS
110 CONTINUE
IF(IANH1.NE.0) THEN
WRITE(6,8)
WRITE(6,10) IANH1,FLIM1
END IF
IF(IANH2.NE.0) THEN
WRITE(6,8)
WRITE(6,10) IANH2,FLIM2
END IF
C
IF(IPRNT.GT.2) GO TO 211
WRITE(6,4)
DO 112 II=1,NVIB
IVIB=NFRQ(II)
FRQI=FREQ(IVIB)
DO 112 JJ=1,II
JVIB=NFRQ(JJ)
FRQJ=FREQ(JVIB)
XRS=XIJ(IVIB,JVIB)
WRITE(6,5) II,JJ,FRQI,FRQJ,XRS
112 CONTINUE
C
C:::::::::::::::::::::::::::::::::::::::
C:::CALCULATE FUNDAMENTAL FREQUENCIES:::
C:::::::::::::::::::::::::::::::::::::::
211 CONTINUE
WRITE(6,6)
DO 115 II=1,NVIB
IVIB=NFRQ(II)
VALU1=FREQ(IVIB)
VALU2=XIJ(IVIB,IVIB)*2.0D+00
VALU3=A00
DO 114 JJ=1,NVIB
JVIB=NFRQ(JJ)
IF(IVIB.EQ.JVIB) GO TO 114
VALU3=VALU3+XIJ(IVIB,JVIB)
114 CONTINUE
DELTA=VALU2+VALU3*0.5D+00
VALUT=VALU1+DELTA
WRITE(6,7) II,VALU1,DELTA,VALUT
115 CONTINUE
C
RETURN
END