-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathlstm_c2_generation.py
286 lines (217 loc) · 9.19 KB
/
lstm_c2_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
from __future__ import print_function
from model_utils import ModelUtils
from model_def import ModelDef
from run_config import RunConfig
from keras.utils.data_utils import get_file
from keras import backend as K
import numpy as np
import time
import sys
import os
import signal
import math
from generator import Generator
utils = ModelUtils()
model_def = None
config = utils.setup_config()
signal.signal(signal.SIGINT, utils.signal_handler)
signal.signal(signal.SIGTERM, utils.signal_handler)
# read an existing iteration counter if it exists
start_iteration = utils.read_iteration_count() or config.start_iteration
config.start_iteration = start_iteration
num_iterations = config.num_iterations
fit_batch_size = config.fit_batch_size
if config.stateful:
learn_next_step = False
else:
learn_next_step = config.learn_next_step
gen_every_nth = config.gen_every_nth
save_model_every_nth = config.save_model_every_nth
framelen=config.framelen
frame_seq_len = config.frame_seq_len
seed_seq_len = config.seed_seq_len
seq_step = config.seq_step or frame_seq_len
config.seq_step = seq_step
test_data_fn = config.test_data_fn
utils.log("loading test data from: ", test_data_fn)
testdata = np.fromfile(test_data_fn, dtype=np.uint8)
len_testdata = len(testdata)
num_frames = int(len_testdata / framelen)
utils.log('corpus length (bytes):', len_testdata)
utils.log('corpus length (frames):', num_frames)
config.num_frames = num_frames
limit_frames = int(config.limit_frames)
config.log_attrs()
if not utils.generate_mode():
config.save_config()
overlap_sequence = config.overlap_sequence
frame_seqs = []
next_frame_seqs = []
current_frame_seqs = []
next_frames = []
current_frames = []
all_frames = []
def normalize_input(frame):
normframe = np.array(frame, dtype=np.float32)
normframe = np.divide(normframe, config.frame_prop_orig_scale)
return normframe
def gen_sequence(iteration):
return (iteration > 0) and (iteration % gen_every_nth == 0)
def save_model(iteration):
return (iteration % save_model_every_nth == 0)
utils.log("scanning testdata into frames and frame sequences")
# step through the testdata, pulling those bytes into an array of all the the frames, all_frames
for j in range(0, num_frames):
i = j * framelen
all_frames.append(normalize_input(testdata[i: i + framelen]))
utils.log('actual number of frames:', len(all_frames))
# Check if we are in 'generate' mode.
if utils.generate_mode():
# In generate mode
num_frame_seqs = seed_seq_len
else:
# In training mode
# Pull the frames into frame sequences (frame_seqs), each of frame_seq_len frames
# Each frame sequence is a sub-batch of timesteps, handed to the model in one chunk
for i in range(0, num_frames - 2*frame_seq_len, seq_step):
# The next frame starts frame_seq_len from the current index
i_next = i + frame_seq_len
# Store a set of frame sequences
frame_seqs.append(all_frames[i : i_next])
if learn_next_step:
# Pull a single frame following each frame sequence into a corresponding array of next_frames
# When just learning based on the next step after a frame sequence, the next frame is the one following
# the last frame in the sequence
next_frames.append(all_frames[i_next])
# The current frame is therefore the last frame in the frame sequence
current_frames.append(all_frames[i_next - 1 ])
else:
# If learning on a whole frame sequence, then start the sequence at the start of the next sequence
# and make it span the same length
next_frame_seqs.append(all_frames[i_next : (i_next + frame_seq_len)])
# The current frame sequence is segmented in the same way as the input frame sequence in frame_seqs
current_frame_seqs.append(all_frames[i : i_next])
# Stateful operation requires the total set of timesteps to be a multiple of the batch size
if config.stateful and (len(frame_seqs) % fit_batch_size > 0):
excess_frameseqs = len(frame_seqs) % fit_batch_size
print("Stateful operation. Reducing frame sequences by:", excess_frameseqs)
for i in range(excess_frameseqs):
frame_seqs.pop(-1)
utils.log('number of frame sequences:', len(frame_seqs))
# make sure that the input and output frames are float32, rather than
# the unsigned bytes that we load from the corpus
print('initialising input and expected output arrays')
num_frame_seqs = len(frame_seqs)
X = np.zeros((num_frame_seqs, frame_seq_len, framelen), dtype=np.float32)
# Provide a second input set, containing sub-batch frame sequences that are shorter, to enable
# 2D Convolutional networks to be trained without fake padding
# These are effectively a window into the main frame sequence with a frame removed from each end
# representing where the convolution is not able to reach
X2 = np.zeros((num_frame_seqs, (frame_seq_len - overlap_sequence*2), framelen), dtype=np.float32)
if learn_next_step:
y = np.zeros((num_frame_seqs, framelen), dtype=np.float32)
y2 = np.zeros((num_frame_seqs, framelen), dtype=np.float32)
else:
# If we are learning with a shortened X2 input sequence, the outputs we want to use for loss calculation will the
# the same length as this shorter input
y = np.zeros((num_frame_seqs, frame_seq_len - overlap_sequence*2, framelen), dtype=np.float32)
y2 = np.zeros((num_frame_seqs, frame_seq_len - overlap_sequence*2, framelen), dtype=np.float32)
for i, frame_seq in enumerate(frame_seqs):
if learn_next_step:
# expected output is always the next frame for corresponding frame_seq
y[i] = next_frames[i]
# The decoder output is always the current frame
y2[i] = current_frames[i]
else:
if overlap_sequence != 0:
y[i] = next_frame_seqs[i][overlap_sequence : frame_seq_len - overlap_sequence]
y2[i] = current_frame_seqs[i][overlap_sequence : frame_seq_len - overlap_sequence]
else:
y[i] = next_frame_seqs[i]
y2[i] = current_frame_seqs[i]
# main input is simply each frame_seq
X[i] = frame_seq
# secondary shorter input takes the Conv2D unreachable frames off the start and finish, if we are using this
if overlap_sequence != 0:
X2[i] = frame_seq[overlap_sequence : frame_seq_len - overlap_sequence]
else:
X2[i] = frame_seq
#### Setup the model
model_def = utils.define_or_load_model(frame_seq_len, framelen, num_frame_seqs)
generator = Generator(utils, all_frames)
generator.framelen = framelen
# generator seed can start at various positions in the frame set
# command line parameters can force this in the following call
utils.setup_seed_start(generator)
# for generating a model, no training iterations are required
# just generate the data from the model and exit
if utils.generate_mode():
utils.log("Generating Samples")
generator.generate(0)
exit()
frame_rotate = 0
# train the model
# output generated frames after nth iteration
for iteration in range(start_iteration, num_iterations + 1):
print('-' * 50)
utils.iteration = iteration
utils.log('Training Iteration', iteration)
model_def.before_iteration(iteration)
limit_frames = int(config.limit_frames)
if limit_frames and limit_frames > 0:
utils.log("frame rotate:", frame_rotate)
utils.log("from frame:", frame_rotate*limit_frames)
utils.log("to frame:", (frame_rotate+1)*limit_frames)
Xl = X[frame_rotate*limit_frames : (frame_rotate+1)*limit_frames]
Xl2 = X2[frame_rotate*limit_frames : (frame_rotate+1)*limit_frames]
yl = y[frame_rotate*limit_frames : (frame_rotate+1)*limit_frames]
yl2 = y2[frame_rotate*limit_frames : (frame_rotate+1)*limit_frames]
utils.log("starting model fit with frames:", len(Xl))
else:
Xl = X
Xl2 = X2
yl = y
yl2 = y2
utils.log('using full set of frames')
inX = [Xl, Xl2]
utils.log('generating encoded output')
# Generate a mid layer encoded 'next step' output
if num_frame_seqs > 5000:
split_times = 10
else:
split_times = 1
split_seq_len = num_frame_seqs / split_times
gblocks = []
for s in range(split_times):
generator.input_frame_sequences = next_frame_seqs[int(s * split_seq_len) : int((s+1) * split_seq_len)]
gblocks.append(generator.generate_full_output(3))
out_mid = np.concatenate(gblocks)
outy = [yl, yl2, out_mid, out_mid]
model_def.fit(inX, outy, batch_size=fit_batch_size, epochs=1, shuffle=config.shuffle,
callbacks=[utils.csv_logger]
)
if save_model(iteration):
print("saving .h5 model file")
utils.save_h5_model(iteration)
print("saving .h5 weights file")
utils.save_weights(iteration)
utils.write_iteration_count(iteration)
else:
print("not saving models this iteration")
if gen_sequence(iteration):
# every nth iteration generate sample data as a Codec 2 file
utils.log("Generating samples")
generator.generate(iteration)
utils.write_gen_count(iteration)
else:
print("not generating samples this iteration")
if limit_frames and limit_frames > 0:
if (frame_rotate+1)*limit_frames > num_frame_seqs:
frame_rotate=0
else:
utils.log("Rotate input to next frame set")
frame_rotate+=1
if config.stateful:
utils.log("Reset states")
model_def.model.reset_states()
print()