-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsupervised.py
136 lines (121 loc) · 4.91 KB
/
supervised.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_squared_log_error
from sklearn.metrics import median_absolute_error
import feature_transformation as ft
import math
import pandas as pd
# A customer rolling k-fold implementation, which is capable of cross-validating
# time series data while avoiding look-ahead bias. How to interpret parameters:
# partitions=5, window = 3. ? means training set, ! means testing set.
# These are the operations that will run.
# [?|?|!| | ]
# [?|?|?|!| ]
# [?|?|?|?|!]
# rolling_kfold will average the results of these runs and return them to you.
def rolling_kfold(data, learner, config, partitions=5, window=3):
partition_size = data.shape[0]/partitions
window_start = 0
count = 0
nbtr_final = pd.DataFrame()
nbte_final = pd.DataFrame()
tr_final = pd.DataFrame()
te_final = pd.DataFrame()
for iteration in range(0, partitions - window + 1):
print("\nNEW ITERATION")
left = 0
middle = window_start + partition_size*(window-1)
right = window_start + partition_size*(window)
training_set = data.iloc[left:middle]
testing_set = data.iloc[(middle + 1):right]
model, nbtr_err, nbte_err, tr_err, te_err = learn(training_set, testing_set, learner, config["kbest"], config["do_pca"], config["pca_only"])
window_start += partition_size
nbtr_final = nbtr_final.append(pd.DataFrame(nbtr_err, index=[0]))
nbte_final = nbte_final.append(pd.DataFrame(nbte_err, index=[0]))
tr_final = tr_final.append(pd.DataFrame(tr_err, index=[0]))
te_final = te_final.append(pd.DataFrame(te_err, index=[0]))
print("\n")
print("*"*20)
print("NEXTBUS TRAIN FINAL")
print(nbtr_final.mean())
print("TRAIN FINAL")
print(tr_final.mean())
print("NEXTBUS TEST FINAL")
print(nbte_final.mean())
print("TEST FINAL")
print(te_final.mean())
print("*"*20)
print((nbte_final.mean() - te_final.mean())/nbte_final.mean())
def train_test_split(data, learner, config, percent_train=.80):
top = 0
middle = int(data.shape[0]*percent_train)
bottom = data.shape[0]
training_set = data.iloc[top:middle,:]
testing_set = data.iloc[middle + 1:bottom,:]
model, nbtr_err, nbte_err, tr_err, te_err = learn(training_set, testing_set, learner, config["kbest"], config["do_pca"], config["pca_only"])
print("*"*20)
print("NEXTBUS TRAIN FINAL")
print(nbtr_err)
print("TRAIN FINAL")
print(tr_err)
print("NEXTBUS TEST FINAL")
print(nbte_err)
print("TEST FINAL")
print(te_err)
print("*"*20)
return model
def learn(train, test, learner, kbest, do_pca, pca_only):
train = train.reset_index(drop=True)
test = test.reset_index(drop=True)
train_left = train.iloc[:,:-1]
train_right = train.iloc[:,-1].reshape((-1,1))
test_left = test.iloc[:,:-1]
test_right = test.iloc[:,-1].reshape((-1,1))
print("Training set size: " + str(train_left.shape[0]))
print("Test set size: " + str(test_left.shape[0]))
selected = ft.kbest(train_left, train_right, k=kbest)
train_left = train_left[selected]
test_left = test_left[selected]
#print(selected)
train_sta = train_left["secondsToArrival"]
test_sta = test_left["secondsToArrival"]
train_left, train_max, train_min = normalize(train_left)
print("Max values from normalization:")
print(list(train_max))
print("Min values from normalization:")
print(list(train_min))
test_left, train_max, train_min = normalize(test_left, max=train_max, min=train_min)
if do_pca and pca_only:
train_left = ft.pca(train_left)
test_left = ft.pca(test_left)
elif do_pca:
train_left = train_left.join(ft.pca(train_left))
test_left = test_left.join(ft.pca(test_left))
nbtr_err = error_report("NEXTBUS TRAIN ERROR", pd.DataFrame(train_right), train_sta)
learner = learner.fit(train_left, train_right)
guess = learner.predict(train_left)
tr_err = error_report("TRAIN SET", train_right, guess)
nbte_err = error_report("NEXTBUS TEST ERROR", pd.DataFrame(test_right), test_sta)
guess = learner.predict(test_left)
te_err = error_report("TEST SET", test_right, guess)
return learner, nbtr_err, nbte_err, tr_err, te_err
def error_report(title, actual, predicted):
err = {}
print("**" + title + "**")
err["mae"] = mean_absolute_error(actual, predicted)
err["rmse"] = math.sqrt(mean_squared_error(actual, predicted))
err["medae"] = median_absolute_error(actual, predicted)
print("MAE: " + str(err["mae"]))
print("RMSE: " + str(err["rmse"]))
print("MEDAE: " + str(err["medae"]))
return err
def normalize(df, min=None, max=None):
if min is None:
min = df.min(axis=0)
if max is None:
max = df.max(axis=0)
temp = max - min
temp[temp == 0] = 1
df -= min
df /= temp
return df, max, min