-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmel.hpp
759 lines (705 loc) · 25.3 KB
/
mel.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
// Copyright 2021-2024, Pedro Gomes
//
// This file is part of MEL.
//
// MEL is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// MEL is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with MEL. If not, see <https://www.gnu.org/licenses/>.
#pragma once
#include <algorithm>
#include <array>
#include <cassert>
#include <functional>
#include <iterator>
#include <set>
#include <sstream>
#include <vector>
#include <limits>
#include <ctgmath>
#include "definitions.hpp"
namespace mel {
namespace internal {
/// Returns <true> if parentheses are balanced. Examples:
/// (((a+b)*c)) -> True
/// a)*2*(c -> False
template<class StringType>
bool BalancedParentheses(const StringType& expr) {
int nest_level = 0;
for (const auto c : expr) {
if (c == '(') {
nest_level += 1;
} else if (c == ')') {
nest_level -= 1;
}
// if the nest level becomes negative we know there is an imbalance
if (nest_level < 0) {
return false;
}
}
return nest_level == 0;
}
/// Converts a string to a number of the desired type,
/// returns <true> if the conversion is successful.
template<class StringType, class NumberType>
bool ToNumber(const StringType& s, NumberType& n) {
std::stringstream ss;
ss << s;
return BalancedParentheses(s) && static_cast<bool>(ss >> n);
}
/// Returns <true> if a string is convertible to number.
template<class StringType>
bool IsNumber(const StringType& s) {
double n{};
return ToNumber(s, n);
}
/// Replace all occurrences of "target" in a string.
template<class StringType>
void ReplaceAll(const StringType& target, const StringType& repl,
StringType& str) {
typename StringType::size_type pos = 0;
while ((pos = str.find(target)) != StringType::npos) {
str.replace(pos, target.size(), repl);
}
}
/// Remove redundant parentheses around an expression. Examples:
/// (((a+b)*c)) -> (a+b)*c
template<class StringType>
StringType RemoveParentheses(StringType expr) {
if (expr.size() > 2 && BalancedParentheses(expr)) {
auto new_expr = StringType(expr.begin()+1, expr.end()-1);
while ((expr.front() == '(') && BalancedParentheses(new_expr)) {
expr = new_expr;
if (expr.size() > 2) {
new_expr = StringType(expr.begin()+1, expr.end()-1);
}
}
}
return expr;
}
/// Splits an expression into (op, rhs, lhs), where "op" is a character
/// in op_list. The split is not done if parentheses are not balanced,
/// or if the character preceeding "op" is in excl_chars. Examples:
/// "a+b" -> ("+", "a", "b")
/// "(a+b)*(a-b)" -> ("*", "(a+b)", "(a-b)")
template<class StringType>
std::array<StringType, 3> SplitAtOperation(const StringType& op_list,
const StringType& excl_chars, const StringType& expr) {
std::array<StringType, 3> ret{};
if (expr.empty()) return ret;
for (auto it = expr.end() - 1; it != expr.begin(); --it) {
const auto rhs = StringType(expr.begin(), it+1);
if (!BalancedParentheses(rhs)) {
continue;
}
if (op_list.find(*it) != StringType::npos) {
if (excl_chars.find(*(it-1)) == StringType::npos) {
ret[0] = *it;
ret[1] = StringType(expr.begin(), it);
ret[2] = StringType(it+1, expr.end());
return ret;
}
}
}
return ret;
}
/// Detects if a function from "func_list" is being applied to an expression.
/// Functions are of the form f() or f(,) (for binary functions).
/// The result is returned as (func, arg1, [arg2]). Examples:
/// "sqrt(pow(x,2)+1)" -> ("sqrt", "pow(x,2)+1")
template<class StringListType, class IntListType, class StringType>
std::array<StringType, 3> DetectFunction(const StringListType& func_list,
const IntListType& narg_list, const StringType& expr) {
std::array<StringType, 3> ret{};
int i_func = -1;
for (const auto& f : func_list) {
const auto narg = narg_list[++i_func];
if (expr.size() <= f.size() + 1) {
continue;
}
// remove "f(" and ")"
const auto it = expr.begin() + f.size() + 1;
const auto start_expr = StringType(expr.begin(), it);
const auto inner_expr = StringType(it, expr.end()-1);
if (f+'(' == start_expr && BalancedParentheses(inner_expr)) {
// consider "," an operation to detect binary functions
const auto args = SplitAtOperation(StringType(","),
StringType(), inner_expr);
if (inner_expr.empty()) return ret;
ret[0] = f;
if (args[0].empty() && narg == 1) {
ret[1] = inner_expr;
} else if (!args[0].empty() && narg == 2) {
ret[1] = args[1];
ret[2] = args[2];
} else {
// Function used with the wrong number of arguments.
ret[0] = expr;
}
return ret;
}
}
return ret;
}
/// Modifies an expression to ensure that single character unary operations,
/// such as "-", look like a function, for example "-a" -> "-(a)". However,
/// literals are not modified, i.e. "-2" -> "-2". This also restores the
/// sign of scientific notation exponents.
template<class StringType>
StringType UnaryOpToUnaryFunc(const StringType& op_list,
const StringType& expr,
bool& is_number) {
// recover the sign for scientific notation
auto expr2 = expr;
typename StringType::size_type pos;
if ((pos = expr2.find('}')) != StringType::npos) expr2[pos] = '+';
if ((pos = expr2.find('{')) != StringType::npos) expr2[pos] = '-';
if (!IsNumber(expr2)) {
is_number = false;
if (op_list.find(expr.front()) != StringType::npos && expr[1] != '(') {
return StringType({expr.front(), '('}) + StringType(expr.begin()+1,
expr.end()) + ')';
} else {
return expr;
}
}
is_number = true;
return expr2;
}
/// Replaces the sign of scientific number exponents by }(+) or {(-) to avoid
/// splitting numbers when detecting operations.
template<class StringType>
void MarkScientificNotation(StringType& expr) {
for (auto it = expr.begin(); it != expr.end(); ++it) {
// Find where a number might start.
if (possible_num_starts.find(*it) == str_t::npos) continue;
// Advance to the next character,
if (++it == expr.end()) break;
// that can be a unary operation,
if (unary_ops.find(*it) != str_t::npos) ++it;
// or a sequence of valid digits,
while (it != expr.end() && valid_digits.find(*it) != str_t::npos) ++it;
if (it == expr.end()) break;
// followed by "e" or "E",
if (*it != 'e' && *it != 'E') continue;
if (++it == expr.end()) break;
// and then the sign we need to replace.
if (*it == '+') *it = '}';
if (*it == '-') *it = '{';
}
}
/// Applies a series of substitution rules to an expression to make it
/// compatible with the parsing rules.
template<class StringListType, class StringType>
void Preprocess(const StringListType& rules, const StringListType& subs,
StringType& expr) {
auto old = StringType();
while (old != expr) {
old = expr;
auto subs_it = std::begin(subs);
for (const auto& rule : rules) {
ReplaceAll(rule, *subs_it, expr);
++subs_it;
}
}
}
/// Finds string symbols, within quotation marks and possibly with spaces.
template <class StringType>
std::set<StringType> FindStrings(const StringType& expr) {
std::set<StringType> strings;
for (auto i = expr.find('"', 0); i < expr.size();) {
const auto j = expr.find('"', i + 1);
if (j < expr.size()) {
strings.emplace(expr.begin() + i, expr.begin() + j + 1);
i = expr.find('"', j + 1);
} else {
break;
}
}
return strings;
}
/// Finds an applicable rule to an expression by trying all in the right order.
template<class StringType>
std::array<StringType, 3> ApplyRules(StringType expr) {
if (expr.size() > 1 && no_ops.find(expr.front()) != str_t::npos) {
expr = StringType(expr.begin()+1, expr.end());
}
expr = RemoveParentheses(expr);
auto result = SplitAtOperation(type_one_ops_comm, type_two_ops, expr);
if (result[0].empty()) {
result = SplitAtOperation(type_one_ops_non_comm, type_two_ops, expr);
}
if (result[0].empty()) {
result = SplitAtOperation(type_two_ops_comm, StringType(), expr);
}
if (result[0].empty()) {
result = SplitAtOperation(type_two_ops_non_comm, StringType(), expr);
}
// The operations above are binary, thus enforce that a RHS exists.
if (!result[0].empty() && result[2].empty()) {
result[1].clear();
// 1+, 1*, etc. are convertible to numbers, '' are added to prevent that.
result[0] = '\'' + expr + '\'';
}
if (result[0].empty()) {
bool is_number = false;
expr = UnaryOpToUnaryFunc(unary_ops, expr, is_number);
if (!is_number) {
result = DetectFunction(funcs, nargs, expr);
}
}
if (result[0].empty()) {
// symbol or number
result[0] = expr;
}
return result;
}
/// Converts the text representation of the operation into an operation code.
template<class StringType>
OpCode StringToOpCode(const StringType& str) {
auto b = std::begin(supported_operations);
return static_cast<OpCode>(std::find(b, std::end(supported_operations),
str) - b);
}
/// Builds an expression tree by recursively extracting operations and building
/// subtrees for their lhs and rhs expressions. The symbols are also extracted.
template<class StringType, class StringListType, class TreeType,
class IntListType>
void BuildExpressionTree(const StringType& expr, StringListType& symbols,
TreeType& tree, IntListType& n_children) {
auto& node = tree.nodes[tree.size];
auto& n_child = n_children[tree.size];
const auto result = internal::ApplyRules(expr);
if (result[1].empty()) {
typename TreeType::type value;
if (ToNumber(result[0], value)) {
node.type = OpCode::NUMBER;
node.val = value;
n_child = 0;
} else {
node.type = OpCode::SYMBOL;
// Find the index of the symbol, or append it to the list.
const auto pos = std::find(symbols.begin(), symbols.end(), result[0]);
node.symbol_id = static_cast<int>(pos - symbols.begin());
if (pos == symbols.end()) {
symbols.push_back(result[0]);
}
n_child = 0;
}
} else {
// The node is an expression with 1 or 2 children.
node.type = StringToOpCode(result[0]);
assert(node.type != OpCode::NOOP);
node.child.left = ++tree.size;
tree.nodes[node.child.left].level = static_cast<short>(node.level + 1);
BuildExpressionTree(result[1], symbols, tree, n_children);
n_child += n_children[node.child.left] + 1;
if (!result[2].empty()) {
node.child.right = ++tree.size;
tree.nodes[node.child.right].level = static_cast<short>(node.level + 1);
BuildExpressionTree(result[2], symbols, tree, n_children);
n_child += n_children[node.child.right] + 1;
} else {
node.child.right = -1;
}
}
}
/// Prints the nodes of a tree to a stream.
template<class TreeType, class StringListType, class StreamType>
void PrintTreeNodes(const TreeType& tree, const StringListType& symbols,
StreamType& stream) {
for (int i = 0; i < tree.size; ++i) {
const auto& node = tree.nodes[i];
switch (node.type) {
case OpCode::NUMBER:
stream << i << " L" << node.index << " " << node.val << '\n';
break;
case OpCode::SYMBOL:
stream << i << " L" << node.index << " "
<< symbols[node.symbol_id] << '\n';
break;
case OpCode::NOOP:
assert(false);
break;
default:
const auto& op = supported_operations[static_cast<int>(node.type)];
stream << i << " L" << node.index << " " << op << " "
<< node.child.left << " " << node.child.right << '\n';
}
}
}
/// Prints a representation of a tree to a stream.
template<class TreeType, class StringListType, class StreamType>
void PrintExpressionTree(const TreeType& tree, int i,
const StringListType& symbols,
int level, StreamType& stream) {
for (int k = 0; k < level; ++k) {
stream << " ";
}
const auto& node = tree.nodes[i];
switch (node.type) {
case OpCode::NUMBER:
stream << node.val << '\n';
break;
case OpCode::SYMBOL:
stream << symbols[node.symbol_id] << '\n';
break;
case OpCode::NOOP:
assert(false);
break;
default:
const auto& op = supported_operations[static_cast<int>(node.type)];
stream << op << '\n';
PrintExpressionTree(tree, node.child.left, symbols, level+1, stream);
if (node.child.right >= 0) {
PrintExpressionTree(tree, node.child.right, symbols, level+1, stream);
}
break;
}
}
template <OptimMode>
struct EvalStackSize {
static constexpr int size = max_tree_size;
};
template <>
struct EvalStackSize<OptimMode::STACK_SIZE> {
static constexpr int size = std::ceil(log2(max_tree_size));
};
/// Evaluates an expression tree.
template<class ReturnType, class TreeType, class FunctionType>
ReturnType EvaluateExpressionTree(const TreeType& tree,
const FunctionType& index_to_value) {
// Because a node only depends on higher-level nodes, we can start evaluating
// them from the highest level (bottom of the tree) until we arrive at the
// top (final result). Note that there are no dependencies within each level.
// This avoids recursion and thus is faster, at the expense of using stack
// space, potentially for all possible intermediate results.
std::array<ReturnType, EvalStackSize<TreeType::mode>::size> v;
for (int j = tree.size - 1; j >= 0; --j) {
const auto& node = tree.nodes[j];
int i = j, left{}, right{};
if (TreeType::mode == OptimMode::STACK_SIZE) {
i = node.index;
left = node.child_stack.left;
right = node.child_stack.right;
} else if (node.type != OpCode::NUMBER &&
node.type != OpCode::SYMBOL) {
left = node.child.left;
right = node.child.right;
}
switch (node.type) {
case OpCode::NUMBER:
v[i] = static_cast<ReturnType>(node.val);
break;
case OpCode::SYMBOL:
v[i] = index_to_value(node.symbol_id);
break;
case OpCode::ADD:
v[i] = v[left] + v[right];
break;
case OpCode::SUB:
if (right >= 0) {
v[i] = v[left] - v[right];
} else {
v[i] = -v[left];
}
break;
case OpCode::MUL:
v[i] = v[left] * v[right];
break;
case OpCode::DIV:
v[i] = v[left] / v[right];
break;
MEL_FUNCTION_IMPLEMENTATIONS(v[left], v[right])
case OpCode::NOOP:
assert(false);
}
}
return v[0];
}
/// Remove common symbols and numbers by converting the nodes to NOOP.
/// The size of the tree then needs to be adjusted after sorting these
/// nodes to the end.
template <class TreeType>
void RemoveDuplicates(TreeType& tree) {
for (int i = 0; i < tree.size; ++i) {
auto& node_i = tree.nodes[i];
if (node_i.type != internal::OpCode::SYMBOL &&
node_i.type != internal::OpCode::NUMBER) {
continue;
}
for (int j = 0; j < tree.size; ++j) {
// For each function node check if the children use a value
// or symbol equivalent to node "i".
auto& node_j = tree.nodes[j];
switch (node_j.type) {
case internal::OpCode::NUMBER:
case internal::OpCode::SYMBOL:
case internal::OpCode::NOOP:
break;
default: {
auto check_child = [&](int& k) {
if (k < 0 || k == i) return;
auto& node_k = tree.nodes[k];
if (node_k.type != node_i.type) return;
// If same symbol or value.
if ((node_i.type == internal::OpCode::SYMBOL &&
node_k.symbol_id == node_i.symbol_id) ||
(node_i.type == internal::OpCode::NUMBER &&
node_k.val == node_i.val)) {
// Point to i instead of k, and change the type and level of
// k such that it will be sorted last.
k = i;
node_i.level = std::max(node_i.level, node_k.level);
node_k.level = std::numeric_limits<short>::max();
node_k.type = internal::OpCode::NOOP;
}
};
check_child(node_j.child.left);
check_child(node_j.child.right);
}
}
}
}
}
/// Computes the index of each node of the tree in a depth-first traversal.
template <class TreeType, class IntListType>
void DepthFirstIndex(const TreeType& tree, const IntListType& n_children,
IntListType& index) {
index[0] = 0;
for (int i = 0; i < tree.size; ++i) {
auto& node = tree.nodes[i];
switch (node.type) {
case internal::OpCode::NUMBER:
case internal::OpCode::SYMBOL:
case internal::OpCode::NOOP:
break;
default:
// Take the child node with fewer nodes under it first.
auto child = node.child;
if (child.right >= 0 &&
n_children[child.right] < n_children[child.left]) {
std::swap(child.right, child.left);
}
// This is from the DFS property that to go from left to right
// we add the number of children under the left node plus one.
index[child.left] = index[i] + 1;
if (child.right >= 0) {
index[child.right] = index[i] + n_children[child.left] + 2;
}
}
}
}
/// When optimizing for the required size of the evaluation stack, map the
/// destination location for nodes and source location for their children on
/// that stack.
template <class IntListType, class TreeType>
void MapEvaluationStack(IntListType& stack, TreeType& tree) {
// Determine the position of each node on the evaluation stack.
// After sorting by DFI the rules for pushing and popping are:
// - Push if the level is greater or equal than the top of the stack.
// - Pop the top one or two entries if the level is lower.
int pos = 0;
for (int i = tree.size - 1; i >= 0; --i) {
auto& node = tree.nodes[i];
if (pos > 0 && node.level < tree.nodes[stack[pos - 1]].level) {
// Pop.
pos -= node.child.right >= 0 ? 2 : 1;
}
// Push.
stack[pos] = i;
node.index = static_cast<short>(pos);
++pos;
}
// Determine the locations of child nodes on the stack,
// this avoids indirection during evaluation.
for (int i = 0; i < tree.size; ++i) {
auto& node = tree.nodes[i];
switch (node.type) {
case internal::OpCode::NUMBER:
case internal::OpCode::SYMBOL:
case internal::OpCode::NOOP:
break;
default:
node.child_stack.left =
static_cast<int8_t>(tree.nodes[node.child.left].index);
node.child_stack.right = static_cast<int8_t>(-1);
if (node.child.right >= 0) {
node.child_stack.right =
static_cast<int8_t>(tree.nodes[node.child.right].index);
}
}
}
}
} // namespace internal
/// Type for an expression tree. The result of parsing expressions and used
/// to evaluate them.
template<class NumberType, OptimMode Mode = internal::default_optim_mode>
struct ExpressionTree {
using type = NumberType;
static constexpr OptimMode mode = Mode;
struct Node {
// Type of the node, either as a leaf or as an operation.
internal::OpCode type = internal::OpCode::NOOP;
template <class IntType>
struct Children {
IntType left, right;
};
// Level of the node in the tree. Then the location of child
// nodes on the evaluation stack (for OptimMode::STACK_SIZE).
union {
short level = 0;
Children<int8_t> child_stack;
};
// Index of the node in the tree. Then the location of the
// node on the evaluation stack (for OptimMode::STACK_SIZE).
short index = 0;
// If the node is a leaf, it is either a number or a symbol,
// otherwise is has one or two child nodes.
union {
NumberType val;
int symbol_id;
Children<int> child;
};
bool operator<(const Node& other) const {
return level != other.level ? level < other.level :
static_cast<int>(type) < static_cast<int>(other.type);
}
};
std::array<Node, internal::max_tree_size> nodes;
int size = 0;
};
/// Preprocess an expression, create an expression tree for it, and extract its
/// symbols in the process. NumberType is the type used for stored constants
/// (i.e. literals).
template<class NumberType, OptimMode Mode = internal::default_optim_mode,
class StringType, class StringListType>
ExpressionTree<NumberType, Mode> Parse(StringType expr,
StringListType& symbols) {
StringListType orig_strings, repl_strings;
int i_repl = 0;
for (const auto& str : internal::FindStrings(expr)) {
const auto h = std::hash<StringType>{}(str) % 8192 + i_repl * 8192;
orig_strings.emplace_back(str);
repl_strings.emplace_back("mel_" + std::to_string(h));
++i_repl;
}
internal::Preprocess(orig_strings, repl_strings, expr);
internal::Preprocess(internal::prep_rules, internal::prep_subs, expr);
internal::MarkScientificNotation(expr);
ExpressionTree<NumberType, Mode> tree{};
for (int i = 0; i < internal::max_tree_size; ++i) {
tree.nodes[i].index = static_cast<short>(i);
}
std::array<int, internal::max_tree_size> n_children{}, dfi{};
internal::BuildExpressionTree(expr, symbols, tree, n_children);
tree.size++;
if (Mode == OptimMode::STACK_SIZE) {
internal::DepthFirstIndex(tree, n_children, dfi);
}
// Undo the string replacements.
for (auto& symbol : symbols) {
const auto it =
std::find(repl_strings.begin(), repl_strings.end(), symbol);
if (it != repl_strings.end()) {
symbol = orig_strings[std::distance(repl_strings.begin(), it)];
}
}
// Early return if we are not optimizing the evaluation.
if (Mode == OptimMode::NONE) return tree;
// Sort nodes by their level in the tree, nodes in level i can be evaluated
// with the values at level i+1. This makes the evaluation faster and it
// allows removing the eliminated nodes easily. When minimizing the
// evaluation stack size, sort by depth-first index instead.
if (Mode == OptimMode::TREE_SIZE) {
internal::RemoveDuplicates(tree);
std::sort(tree.nodes.begin(), tree.nodes.begin() + tree.size);
} else {
using Node = typename ExpressionTree<NumberType, Mode>::Node;
std::sort(tree.nodes.begin(), tree.nodes.begin() + tree.size,
[&dfi](const Node& a, const Node& b) {
return dfi[a.index] < dfi[b.index];
});
}
// Renumber children after sorting.
std::array<int, internal::max_tree_size> perm;
for (int i = 0; i < internal::max_tree_size; ++i) {
perm[tree.nodes[i].index] = i;
}
auto new_size = tree.size;
for (int i = 0; i < tree.size; ++i) {
auto& node = tree.nodes[i];
switch (node.type) {
case internal::OpCode::NUMBER:
case internal::OpCode::SYMBOL:
break;
case internal::OpCode::NOOP:
--new_size;
break;
default:
node.child.left = perm[node.child.left];
if (node.child.right >= 0) {
node.child.right = perm[node.child.right];
}
}
}
if (Mode == OptimMode::TREE_SIZE) {
tree.size = new_size;
} else {
auto& stack = n_children;
internal::MapEvaluationStack(stack, tree);
}
return tree;
}
/// Prints a representation of a tree to a stream.
template<class TreeType, class StringListType, class StreamType>
void Print(const TreeType& tree, const StringListType& symbols,
StreamType& stream) {
internal::PrintExpressionTree(tree, 0, symbols, 0, stream);
}
/// Prints the nodes of a tree to a stream.
template<class TreeType, class StringListType, class StreamType>
void PrintNodes(const TreeType& tree, const StringListType& symbols,
StreamType& stream) {
internal::PrintTreeNodes(tree, symbols, stream);
}
/// Evaluates an expression. The functor "index_to_value" should map the index
/// of each symbol (order in the list produced by Parse) to its value
/// (int -> ReturnType). The return type does not need to be the same as the
/// type of number for the constants in the tree.
template<class ReturnType, class TreeType, class FunctionType>
ReturnType Eval(const TreeType& tree, const FunctionType& index_to_value) {
return internal::EvaluateExpressionTree<ReturnType>(tree, index_to_value);
}
/// Overload of Eval, where the functor "symbol_to_value" should map each
/// symbol to its value (StringType -> ReturnType).
template<class ReturnType, class TreeType, class StringListType,
class FunctionType>
ReturnType Eval(const TreeType& tree, const StringListType& symbols,
const FunctionType& symbol_to_value) {
auto index_to_value = [&](int i) {
return symbol_to_value(symbols[i]);
};
return internal::EvaluateExpressionTree<ReturnType>(tree, index_to_value);
}
/// Overload of Eval, evaluates a raw expression (string) assuming it does not
/// contain symbols (provided for convenience).
template<class ReturnType, OptimMode Mode = OptimMode::NONE, class StringType>
ReturnType Eval(const StringType& expr) {
std::vector<str_t> s;
auto f = [&](int) {
assert(false && "Unexpected symbol");
return ReturnType{};
};
return internal::EvaluateExpressionTree<ReturnType>(
Parse<ReturnType, Mode>(str_t(expr), s), f);
}
} // namespace mel