-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathfunction.py
305 lines (250 loc) · 8.79 KB
/
function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# Copyright 2019-2023, FADO Contributors (cf. AUTHORS.md)
#
# This file is part of FADO.
#
# FADO is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FADO is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FADO. If not, see <https://www.gnu.org/licenses/>.
import numpy as np
import abc
class FunctionBase(abc.ABC):
"""Abstract base class to define the essential interface of Function objects."""
def __init__(self,name):
self._name = name
# inputs
self._variables = []
def getName(self,maxLen=0):
name = self._name
if maxLen==0: return name
if maxLen<len(name): name = name[:maxLen]
return name
def getVariables(self):
return self._variables
@abc.abstractmethod
def getValue(self):
return NotImplemented
@abc.abstractmethod
def getGradient(self,mask):
return NotImplemented
def getParameters(self):
return []
def resetValueEvalChain(self):
pass
def resetGradientEvalChain(self):
pass
def getValueEvalChain(self):
return []
def getGradientEvalChain(self):
return []
#end
class Function(FunctionBase):
"""
Defines a mathematical function R^n -> R as a series of evaluation steps.
Functions are associated with optimization drivers to define optimization problems,
they are not designed (nor intended) to be passed directly to optimization methods.
Parameters
----------
name : String to identify the function.
outFile : Where to read the result from.
outParser : Object used to read the outFile.
See also
--------
ExternalRun, currently the only way to define the evaluation steps.
Variable, the class used to define optimization variables.
"""
def __init__(self,name="",outFile="",outParser=None):
FunctionBase.__init__(self,name)
# where and how the output value is obtained
self.setOutput(outFile,outParser)
# evaluation pipelines for value and gradient
self._funEval = []
self._gradEval = []
# where and how their gradients are obtained
self._gradFiles = []
self._gradParse = []
# default value when evaluation fails
self._defaultValue = None
def addInputVariable(self,variable,gradFile,gradParser):
"""
Attach a variable object to the function.
Parameters
----------
variable : The variable object.
gradFile : Where to get the gradient of the function w.r.t. the variable.
gradParser : The object used to read the gradFile.
"""
self._variables.append(variable)
self._gradFiles.append(gradFile)
self._gradParse.append(gradParser)
def getParameters(self):
parameters = []
for evl in self._funEval:
parameters += evl.getParameters()
for evl in self._gradEval:
parameters += evl.getParameters()
return parameters
def setOutput(self,file,parser):
self._outFile = file
self._outParser = parser
def addValueEvalStep(self,evaluation):
"""Add a required step to compute the function value."""
self._funEval.append(evaluation)
def addGradientEvalStep(self,evaluation):
"""Add a required step to compute the function gradient."""
self._gradEval.append(evaluation)
# check if any evaluation is in error state
def _checkError(self,evals):
for evl in evals:
if evl.isError(): raise RuntimeError("Evaluations failed.")
#end
#end
def getValue(self):
"""
Get the function value, i.e. apply the parser to the output file.
Run the evaluation steps if they have not been executed yet.
Note that this method does not have parameters, the current value of the variables
is set via the Variable objects.
"""
# check if we can retrive the value
self._checkError(self._funEval)
for evl in self._funEval:
if not evl.isRun():
self._sequentialEval(self._funEval)
break
#end
return self._outParser.read(self._outFile)
def getGradient(self,mask=None):
"""
Get the gradient (as a dense vector) of the function, i.e. applies each variable's
parser. If no mask (dictionary) is provided simple concatenation is performed,
otherwise each variable's gradient is copied starting at an offset. Note that if a
mask is provided the size of the resulting vector is the sum of the sizes of the
variables used as keys for the dictionary.
Example
-------
addVariable(z,...) # z = [1, 1] and df/dz = [2, 2]
getGradient({x : 0, z : 3}) -> [0, 0, 0, 2, 2]
"""
# check if we can retrive the gradient
self._checkError(self._gradEval)
for evl in self._gradEval:
if not evl.isRun():
self._sequentialEval(self._gradEval)
break
#end
# determine size of gradient vector
size = 0
if mask is None: src = self._variables
else: src = mask.keys()
for var in src:
size += var.getSize()
# populate gradient vector
gradient = np.ndarray((size,))
idx = 0
for var,file,parser in zip(self._variables,self._gradFiles,self._gradParse):
grad = parser.read(file)
if var.getSize() == 1:
# Convert the value to a scalar if it is not yet.
try: grad = sum(grad)
except: pass
#end
if mask is not None: idx = mask[var]
try:
for val in grad:
gradient[idx] = val
idx += 1
except:
gradient[idx] = grad
idx += 1
#end
#end
return gradient
#end
def _sequentialEval(self,evals):
for evl in evals:
evl.initialize()
evl.run()
#end
#end
def resetValueEvalChain(self):
self._resetEvals(self._funEval)
def resetGradientEvalChain(self):
self._resetEvals(self._gradEval)
def _resetEvals(self,evals):
for evl in evals:
evl.finalize()
#end
#end
def getValueEvalChain(self):
return self._funEval
def getGradientEvalChain(self):
return self._gradEval
def hasDefaultValue(self):
return self._defaultValue is not None
def setDefaultValue(self,value):
"""Give a default value to the function, to be used in case the evaluation fails."""
self._defaultValue = value
def getDefaultValue(self):
return self._defaultValue
#end
class NonDiscreteness(FunctionBase):
"""
Continuous measure of non-discreteness (usually to use as a constraint).
The function is zero when the variables are at either bound (lower or upper)
and 1 (maximum) when they are at the mid-point.
"""
def __init__(self,name=""):
FunctionBase.__init__(self,name)
def addInputVariable(self,variable):
self._variables.append(variable)
def getValue(self):
y = 0.0
N = 0
for var in self._variables:
N += var.getSize()
x = var.getCurrent()
lb = var.getLowerBound()
ub = var.getUpperBound()
y += ((ub-x)*(x-lb)/(ub+lb)**2).sum()
return 4*y/N
def getGradient(self,mask=None):
# determine size of gradient vector
N = 0
for var in self._variables:
N += var.getSize()
size = 0
if mask is None:
size = N
else:
for var in mask.keys():
size += var.getSize()
# populate gradient vector
gradient = np.ndarray((size,))
idx = 0
for var in self._variables:
x = var.getCurrent()
lb = var.getLowerBound()
ub = var.getUpperBound()
grad = (4.0/N)*(ub+lb-2*x)/(ub+lb)**2
if mask is not None: idx = mask[var]
try:
for val in grad:
gradient[idx] = val
idx += 1
except:
gradient[idx] = grad
idx += 1
#end
#end
return gradient
#end
#end