-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrecipe_estimator.py
256 lines (199 loc) · 13.2 KB
/
recipe_estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import time
from ortools.linear_solver import pywraplp
from prepare_nutrients import prepare_nutrients
precision = 0.01
def add_ingredients_to_solver(ingredients, solver, total_ingredients):
ingredient_numvars = []
for i,ingredient in enumerate(ingredients):
ingredient_numvar = {'ingredient': ingredient, 'numvar': solver.NumVar(0.0, solver.infinity(), '')}
ingredient_numvars.append(ingredient_numvar)
# TODO: Known percentage or stated range
if ('ingredients' in ingredient):
# Child ingredients
child_numvars = add_ingredients_to_solver(ingredient['ingredients'], solver, total_ingredients)
ingredient_numvar['child_numvars'] = child_numvars
else:
# Constrain water loss. If ingredient is 20% water then
# raw ingredient - lost water must be greater than 80
# ingredient - water_loss >= ingredient * (100 - water_ratio) / 100
# ingredient - water_loss >= ingredient - ingredient * water ratio / 100
# ingredient * water ratio / 100 - water_loss >= 0
ingredient_numvar['lost_water'] = solver.NumVar(0, solver.infinity(), '')
water = ingredient['nutrients'].get('water', {})
maximum_water_content = water.get('percent_max', 0)
print("maximum_water_content", ingredient['id'], maximum_water_content)
water_loss_ratio_constraint = solver.Constraint(0, solver.infinity(), '')
water_loss_ratio_constraint.SetCoefficient(ingredient_numvar['numvar'], 0.01 * maximum_water_content)
water_loss_ratio_constraint.SetCoefficient(ingredient_numvar['lost_water'], -1.0)
total_ingredients.SetCoefficient(ingredient_numvar['numvar'], 1)
total_ingredients.SetCoefficient(ingredient_numvar['lost_water'], -1.0)
print("total_ingredients:", total_ingredients.name(), ingredient_numvar['ingredient']['id'])
return ingredient_numvars
# Add constraints to ensure that the quantity of each ingredient is greater than or equal to the quantity of the next ingredient
# and that the sum of children ingredients is equal to the parent ingredient
def add_relative_constraints_on_ingredients(solver, parent_ingredient_numvar, ingredient_numvars):
# Constraint: parent_ingredient = sum(children_ingredients)
if (parent_ingredient_numvar is not None):
parent_ingredient_constraint = solver.Constraint(0, 0)
parent_ingredient_constraint.SetCoefficient(parent_ingredient_numvar['numvar'], 1)
print("parent_ingredient_constraint - parent :", parent_ingredient_constraint.name(), parent_ingredient_numvar['ingredient']['id'])
for i,ingredient_numvar in enumerate(ingredient_numvars):
parent_ingredient_constraint.SetCoefficient(ingredient_numvar['numvar'], -1)
print("parent_ingredient_constraint - child :", parent_ingredient_constraint.name(), ingredient_numvar['ingredient']['id'])
for i,ingredient_numvar in enumerate(ingredient_numvars):
# Relative constraints on consecutive ingredients
if i < (len(ingredient_numvars) - 1):
# constraint: ingredient (i) - ingredient (i+1) >= 0
relative_constraint = solver.Constraint(0, solver.infinity())
relative_constraint.SetCoefficient(ingredient_numvar['numvar'], 1.0)
relative_constraint.SetCoefficient(ingredient_numvars[i+1]['numvar'], -1.0)
print("relative_constraint:", relative_constraint.name(), ingredient_numvar['ingredient']['id'], '>=', ingredient_numvars[i+1]['ingredient']['id'])
# Recursively apply parent ingredient constraint and relative constraints to child ingredients
if 'child_numvars' in ingredient_numvar:
add_relative_constraints_on_ingredients(solver, ingredient_numvar, ingredient_numvar['child_numvars'])
def add_to_relative_constraint(solver, relative_constraint, ingredient_numvar, coefficient):
if 'child_numvars' in ingredient_numvar:
child_numvars = ingredient_numvar['child_numvars']
for i,child_numvar in enumerate(child_numvars):
add_to_relative_constraint(solver, relative_constraint, child_numvar, coefficient)
if i < (len(child_numvars) - 1):
child_constraint = solver.Constraint(0, solver.infinity())
add_to_relative_constraint(solver, child_constraint, child_numvar, 1.0)
add_to_relative_constraint(solver, child_constraint, child_numvars[i+1], -1.0)
else:
print("relative_constraint:", relative_constraint.name(), ingredient_numvar['ingredient']['id'], coefficient)
relative_constraint.SetCoefficient(ingredient_numvar['numvar'], coefficient)
# For each ingredient, get the quantity estimate from the solver (for leaf ingredients)
# or sum the quantity estimates of the child ingredients (for non-leaf ingredients)
def get_quantity_estimate(ingredient_numvars):
total_quantity = 0
quantity_estimate = 0
for ingredient_numvar in ingredient_numvars:
if ('child_numvars' in ingredient_numvar):
quantity_estimate = get_quantity_estimate(ingredient_numvar['child_numvars'])
else:
quantity_estimate = ingredient_numvar['numvar'].solution_value()
ingredient_numvar['ingredient']['lost_water'] = ingredient_numvar['lost_water'].solution_value()
ingredient_numvar['ingredient']['quantity_estimate'] = quantity_estimate
total_quantity += quantity_estimate
return total_quantity
def set_percent_estimate(ingredients, total_quantity):
for ingredient in ingredients:
if ('ingredients' in ingredient):
set_percent_estimate(ingredient['ingredients'], total_quantity)
ingredient['percent_estimate'] = 100 * ingredient['quantity_estimate'] / total_quantity
def add_nutrient_distance(ingredient_numvars, nutrient_key, positive_constraint, negative_constraint, weighting):
for ingredient_numvar in ingredient_numvars:
ingredient = ingredient_numvar['ingredient']
if 'child_numvars' in ingredient_numvar:
#print(ingredient['indent'] + ' - ' + ingredient['text'] + ':')
add_nutrient_distance(ingredient_numvar['child_numvars'], nutrient_key, positive_constraint, negative_constraint, weighting)
else:
# TODO: Figure out whether to do anything special with < ...
ingredient_nutrient = ingredient['nutrients'][nutrient_key]
#print(ingredient['indent'] + ' - ' + ingredient['text'] + ' (' + ingredient['ciqual_code'] + ') : ' + str(ingredient_nutrient))
print("nutrient_distance:", ingredient['id'], nutrient_key, ingredient_nutrient['percent_min'], ingredient_nutrient['percent_max'])
negative_constraint.SetCoefficient(ingredient_numvar['numvar'], ingredient_nutrient['percent_min'] / 100)
positive_constraint.SetCoefficient(ingredient_numvar['numvar'], ingredient_nutrient['percent_max'] / 100)
# Add an objective to minimize the difference between the quantity of each ingredient and the next ingredient (and 0 for the last ingredient)
def add_objective_to_minimize_maximum_distance_between_ingredients(solver, objective, weighting, ingredient_numvars):
max_ingredients_distance = solver.NumVar(0, solver.infinity(), "max_ingredients_distance")
for i,ingredient_numvar in enumerate(ingredient_numvars):
# constraint: ingredient(i) - ingredient(i+1) <= max_ingredients_distance
# can be expressed as: ingredient(i) - ingredient(i+1) - max_ingredients_distance <= 0
constraint = solver.Constraint(-solver.infinity(), 0)
constraint.SetCoefficient(ingredient_numvar['numvar'], 1)
if i < (len(ingredient_numvars) - 1):
constraint.SetCoefficient(ingredient_numvars[i+1]['numvar'], -1)
# for the last ingredient, we look at its distance to 0
# so the constraint is only ingredient(i) < max_ingredients_distance
# and we don't need add it to the constraint
constraint.SetCoefficient(max_ingredients_distance, -1)
# Apply recursively to child ingredients
if 'child_numvars' in ingredient_numvar:
add_objective_to_minimize_maximum_distance_between_ingredients(solver, objective, weighting, ingredient_numvar['child_numvars'])
objective.SetCoefficient(max_ingredients_distance, weighting)
# estimate_recipe() uses a linear solver to estimate the quantities of all leaf ingredients (ingredients that don't have child ingredient)
# The solver is used to minimise the difference between the sum of the nutrients in the leaf ingredients and the total nutrients in the product
def estimate_recipe(product):
current = time.perf_counter()
prepare_nutrients(product)
ingredients = product['ingredients']
recipe_estimator = product['recipe_estimator']
nutrients = recipe_estimator['nutrients']
# Instantiate a Glop solver
solver = pywraplp.Solver.CreateSolver('GLOP')
if not solver:
return
# Total of leaf level ingredients must add up to at least 100
total_ingredients = solver.Constraint(100 - precision, 100 + precision, '')
ingredient_numvars = add_ingredients_to_solver(ingredients, solver, total_ingredients)
# Make sure nth ingredient > n+1 th ingredient
# add_relative_constraints_on_ingredients(solver, ingredient_numvars)
add_relative_constraints_on_ingredients(solver, None, ingredient_numvars)
objective = solver.Objective()
for nutrient_key in nutrients:
nutrient = nutrients[nutrient_key]
weighting = nutrient.get('weighting')
# Skip nutrients that don't have a weighting
if weighting is None or weighting == 0:
print("Skipping nutrient without weight:", nutrient_key)
continue
# We want to minimise the absolute difference between the sum of the ingredient nutrients and the total nutrients
# Ni: Nutrient content of ingredient i
# Ntot: Total nutrient content of product
# i.e. minimize(abs(sum(Ni) - Ntot))
# However we can't do absolute as it isn't linear
# We get around this by introducing a nutrient distance variable that has to be positive
# This is achieved by setting the following constraints:
# Ndist >= (Sum(Ni) - Ntot)
# Ndist >= -(Sum(Ni) - Ntot)
# or
# Negative constraint: -infinity < ( sum(Ni) - Ndist ) <= Ntot
# Positive constraint: +infinity > ( sum(Ni) + Ndist ) >= Ntot
#
# If the nutrition information about the ingredient is a range of value then use the higher value
# on the positive constraint and the lower value on the negative constraint as this will make it "easier"
# to meet these constraints
#
# Conversely, if the product nutrition value (Ntot) has a range then use the higher value on the negative
# constraint and a lower value on the positive constraint
nutrient_total = nutrient['product_total']
nutrient_distance = solver.NumVar(0, solver.infinity(), nutrient_key)
# not sure this is right as if one ingredient is way over and another is way under
# then will give a good result
negative_constraint = solver.Constraint(-solver.infinity(), nutrient_total)
negative_constraint.SetCoefficient(nutrient_distance, -1)
positive_constraint = solver.Constraint(nutrient_total, solver.infinity())
positive_constraint.SetCoefficient(nutrient_distance, 1)
add_nutrient_distance(ingredient_numvars, nutrient_key, positive_constraint, negative_constraint, weighting)
print("nutrient_key:", nutrient_key, "nutrient_total:", nutrient_total, "weighting:", weighting)
objective.SetCoefficient(nutrient_distance, weighting)
add_objective_to_minimize_maximum_distance_between_ingredients(solver, objective, 0.005, ingredient_numvars)
objective.SetMinimization()
# Have had to keep increasing this until we get a solution for a good set of products
# Not sure what the correct approach is here
solver.SetSolverSpecificParametersAsString("solution_feasibility_tolerance:1e5")
# Following may be an alternative (haven't tried yet)
#solver_parameters = pywraplp.MPSolverParameters()
#solver_parameters.SetDoubleParam(pywraplp.MPSolverParameters.PRIMAL_TOLERANCE, 0.001)
#status = solver.Solve(solver_parameters)
#solver.EnableOutput()
status = solver.Solve()
# Check that the problem has an optimal solution.
if status == solver.OPTIMAL:
print('An optimal solution was found in', solver.iterations(), 'iterations')
else:
if status == solver.FEASIBLE:
print('A potentially suboptimal solution was found in', solver.iterations(), 'iterations')
else:
print('The solver could not solve the problem.')
return status
total_quantity = get_quantity_estimate(ingredient_numvars)
set_percent_estimate(ingredients, total_quantity)
end = time.perf_counter()
recipe_estimator['time'] = end - current
recipe_estimator['status'] = status
recipe_estimator['iterations'] = solver.iterations()
print('Time spent in solver: ', recipe_estimator['time'], 'seconds')
return status