-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchatbot.py
129 lines (115 loc) · 4.84 KB
/
chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import streamlit as st
from openai import OpenAI
from streamlit_feedback import streamlit_feedback
import datetime
import streamlit_analytics2 as streamlit_analytics
import firebase_admin
from firebase_admin import credentials, firestore
import json
MODEL_NAME = "meta-llama-3.1-70b-instruct"
API_KEY = st.secrets["inference_api_key"]["key"]
BASE_URL = st.secrets["inference_api_key"]["base_url"]
SYSTEM_PROMPT = st.secrets["llm_system_prompt"]["prompt"]
def initialize_firebase():
if not firebase_admin._apps:
firebase_config = json.loads(st.secrets["firebase"])
cred = credentials.Certificate(firebase_config)
firebase_admin.initialize_app(cred)
return firestore.client()
def render_sidebar():
st.sidebar.header("Co-Pilot Information")
st.sidebar.markdown('''
<small> LLM Memory Usage is calculated as follows </small>:
''', unsafe_allow_html=True)
latext = r'''
$$
M = \left( \frac{P \cdot 4B}{\frac{32}{Q}} \right) \times 1.2
$$
'''
st.sidebar.write(latext)
st.sidebar.markdown('''
| Symbol | Description |
|--------|-------------|
| M | GPU memory expressed in Gigabyte |
| P | The amount of parameters in the model. E.g. a 7B model has 7 billion parameters. |
| 4B | 4 bytes, expressing the bytes used for each parameter |
| 32 | There are 32 bits in 4 bytes |
| Q | The amount of bits that should be used for loading the model. E.g. 16 bits, 8 bits or 4 bits. |
| 1.2 | Represents a 20% overhead of loading additional things in GPU memory. |
''', unsafe_allow_html=True)
st.sidebar.markdown('<hr>', unsafe_allow_html=True)
st.sidebar.markdown('''
<small>GPU Bot v0.1 | Jul 2024 | Contact: Shelby Thomas | [email protected] </small>
''', unsafe_allow_html=True)
def render_main_content():
st.title("🐙 GTM Co-Pilot")
st.markdown('''
<h6> Co-Pilot may produce inaccurate outputs; double-check outputs.</span>
<br> All prompts are logged anonymously for improvement.
<br> Please up and downvote responses to improve accuracy. </h6>
''', unsafe_allow_html=True)
def initialize_session_state():
if "messages" not in st.session_state:
st.session_state["messages"] = [
{"role": "assistant", "content": "I'm ready to answer questions about an LLMs Memory Usage, GPU capabilities, and Octo's available GPUs."}
]
if "response" not in st.session_state:
st.session_state["response"] = None
def display_chat_messages():
for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])
def handle_user_input(client, system_message):
if prompt := st.chat_input("Message"):
st.session_state.messages.append({"role": "user", "content": prompt})
st.chat_message("user").write(prompt)
messages_for_api = [system_message] + st.session_state.messages
response = client.chat.completions.create(
model=MODEL_NAME,
messages=messages_for_api,
max_tokens=4096
)
msg = response.choices[0].message.content
st.session_state.messages.append({"role": "assistant", "content": msg})
st.session_state["response"] = msg
st.chat_message("assistant").write(msg)
def write_feedback_to_firestore(db, who, up_down, feedback_message, chat_history, timestamp):
feedback_ref = db.collection("feedback")
feedback_ref.add({
"who": who,
"up_down": up_down,
"feedback_message": feedback_message,
"chat_history": chat_history,
"timestamp": timestamp
})
def handle_feedback(db):
if st.session_state["response"]:
feedback = streamlit_feedback(
feedback_type="thumbs",
optional_text_label="[Optional]",
key="feedback",
)
if feedback:
who = st.session_state.get('username', 'anon')
feedback_score = feedback.get("score")
up_down = feedback_score
feedback_message = feedback.get("text", "")
chat_history = str(st.session_state.messages)
timestamp = datetime.datetime.now().isoformat()
write_feedback_to_firestore(db, who, up_down, feedback_message, chat_history, timestamp)
st.toast("Feedback recorded!", icon="📝")
def main():
render_sidebar()
render_main_content()
initialize_session_state()
display_chat_messages()
client = OpenAI(api_key=API_KEY, base_url=BASE_URL)
system_message = {
"role": "system",
"content": SYSTEM_PROMPT
}
handle_user_input(client, system_message)
handle_feedback(db)
# analytics and Firebase initialization
with streamlit_analytics.track(firestore_collection_name="counts", streamlit_secrets_firestore_key="firebase", firestore_project_name="octo-gtmbot"):
db = initialize_firebase()
main()