forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconv.py
169 lines (149 loc) · 6.59 KB
/
conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple
from ..functional import conv2d, conv_transpose2d
from ..module import Module
from ..parameter import Parameter
class Conv2d(Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Tuple[int, int],
stride: Tuple[int, int] = (1, 1),
padding: Tuple[int, int] = (0, 0),
dilation: Tuple[int, int] = (1, 1),
groups: int = 1,
bias: bool = True,
padding_mode: str = 'zeros', # TODO: refine this type
dtype=None) -> None:
super().__init__()
if groups <= 0:
raise ValueError('groups must be a positive integer')
if in_channels % groups != 0:
raise ValueError('in_channels must be divisible by groups')
if out_channels % groups != 0:
raise ValueError('out_channels must be divisible by groups')
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.padding_mode = padding_mode
self.weight = Parameter(shape=(out_channels, in_channels // groups,
*kernel_size),
dtype=dtype)
if bias:
self.bias = Parameter(shape=(out_channels, ), dtype=dtype)
else:
self.register_parameter('bias', None)
def forward(self, input):
return conv2d(input, self.weight.value,
None if self.bias is None else self.bias.value,
self.stride, self.padding, self.dilation, self.groups)
class ConvTranspose2d(Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Tuple[int, int],
stride: Tuple[int, int] = (1, 1),
padding: Tuple[int, int] = (0, 0),
output_padding: Tuple[int, int] = (0, 0),
dilation: Tuple[int, int] = (1, 1),
groups: int = 1,
bias: bool = True,
padding_mode: str = 'zeros', # TODO: refine this type
dtype=None) -> None:
super().__init__()
if groups <= 0:
raise ValueError('groups must be a positive integer')
if in_channels % groups != 0:
raise ValueError('in_channels must be divisible by groups')
if out_channels % groups != 0:
raise ValueError('out_channels must be divisible by groups')
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.output_padding = output_padding
self.dilation = dilation
self.groups = groups
self.padding_mode = padding_mode
self.weight = Parameter(shape=(in_channels, out_channels // groups,
*kernel_size),
dtype=dtype)
if bias:
self.bias = Parameter(shape=(out_channels, ), dtype=dtype)
else:
self.register_parameter('bias', None)
def _output_padding(self,
input,
output_size,
stride,
padding,
kernel_size,
num_spatial_dims: int,
dilation=None):
if output_size is None:
ret = self.output_padding
else:
has_batch_dim = input.dim() == num_spatial_dims + 2
num_non_spatial_dims = 2 if has_batch_dim else 1
if len(output_size) == num_non_spatial_dims + num_spatial_dims:
output_size = output_size[num_non_spatial_dims:]
if len(output_size) != num_spatial_dims:
raise ValueError(
"ConvTranspose{}D: for {}D input, output_size must have {} or {} elements (got {})"
.format(num_spatial_dims, input.dim(), num_spatial_dims,
num_non_spatial_dims + num_spatial_dims,
len(output_size)))
min_sizes = []
max_sizes = []
for d in range(num_spatial_dims):
dim_size = (
(input.size(d + num_non_spatial_dims) - 1) * stride[d] -
2 * padding[d] +
(dilation[d] if dilation is not None else 1) *
(kernel_size[d] - 1) + 1)
min_sizes.append(dim_size)
max_sizes.append(min_sizes[d] + stride[d] - 1)
for i in range(len(output_size)):
size = output_size[i]
min_size = min_sizes[i]
max_size = max_sizes[i]
if size < min_size or size > max_size:
raise ValueError((
"requested an output size of {}, but valid sizes range "
"from {} to {} (for an input of {})").format(
output_size, min_sizes, max_sizes,
input.size()[2:]))
res = []
for d in range(num_spatial_dims):
res.append(output_size[d] - min_sizes[d])
ret = res
return ret
def forward(self, input, output_size=None):
num_spatial_dims = 2
output_padding = self._output_padding(input, output_size, self.stride,
self.padding, self.kernel_size,
num_spatial_dims, self.dilation)
return conv_transpose2d(input, self.weight.value,
None if self.bias is None else self.bias.value,
self.stride, self.padding, output_padding,
self.dilation, self.groups)