Skip to content

Latest commit

 

History

History
 
 

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MPT

This document explains how to build the MPT model using TensorRT-LLM and run on a single GPU and a single node with multiple GPUs

Overview

Currently we use tensorrt_llm.models.GPTLMHeadModel to build TRT engine for MPT models. Support for float16, float32 and bfloat16 conversion. Just change data_type flags to any.

Support Matrix

  • FP16
  • FP8
  • INT8 & INT4 Weight-Only
  • FP8 KV CACHE
  • Tensor Parallel
  • STRONGLY TYPED

MPT 7B

1. Convert weights from HF Tranformers to FT format

The hf_gpt_convert.py script allows you to convert weights from HF Tranformers format to FT format.

python convert_hf_mpt_to_ft.py -i mosaicml/mpt-7b -o ./ft_ckpts/mpt-7b/fp16/ -t float16

python convert_hf_mpt_to_ft.py -i mosaicml/mpt-7b -o ./ft_ckpts/mpt-7b/fp32/ --tensor_parallelism 4 -t float32

--infer_gpu_num 4 is used to convert to FT format with 4-way tensor parallelism

2. Build TensorRT engine(s)

Examples of build invocations:

# Build a single-GPU float16 engine using FT weights.
python3 build.py --model_dir=./ft_ckpts/mpt-7b/fp16/1-gpu \
                 --max_batch_size 64 \
                 --use_gpt_attention_plugin \
                 --use_gemm_plugin \
                 --output_dir ./trt_engines/mpt-7b/fp16/1-gpu

# Build 4-GPU MPT-7B float32 engines
# Enable several TensorRT-LLM plugins to increase runtime performance. It also helps with build time.
python3 build.py --world_size=4 \
                 --parallel_build \
                 --max_batch_size 64 \
                 --max_input_len 512 \
                 --max_output_len 64 \
                 --use_gpt_attention_plugin \
                 --use_gemm_plugin \
                 --model_dir ./ft_ckpts/mpt-7b/fp32/4-gpu \
                 --output_dir=./trt_engines/mpt-7b/fp32/4-gpu

3. Run TRT engine to check if the build was correct

python run.py --engine_dir ./trt_engines/mpt-7b/fp16/1-gpu/ --max_output_len 10

# Run 4-GPU MPT7B TRT engine on a sample input prompt
mpirun -n 4 --allow-run-as-root python run.py --engine_dir ./trt_engines/mpt-7b/fp32/4-gpu/ --max_output_len 10

MPT 30B

Same commands can be changed to convert MPT 30B to TRT LLM format. Below is an example to build MPT30B fp16 4-way tensor parallelized TRT engine

1. Convert weights from HF Tranformers to FT format

The convert_hf_mpt_to_ft.py script allows you to convert weights from HF Tranformers format to FT format.

python convert_hf_mpt_to_ft.py -i mosaicml/mpt-30b -o ./ft_ckpts/mpt-7b/fp16/ --tensor_parallelism 4 -t float16

--infer_gpu_num 4 is used to convert to FT format with 4-way tensor parallelism

2. Build TensorRT engine(s)

Examples of build invocations:

# Build 4-GPU MPT-30B float16 engines
# ALiBi is not supported with GPT attention plugin so we can't use that plugin to increase runtime performance
python3 build.py --world_size=4 \
                 --parallel_build \
                 --max_batch_size 64 \
                 --max_input_len 512 \
                 --max_output_len 64 \
                 --use_gpt_attention_plugin \
                 --use_gemm_plugin \
                 --model_dir ./ft_ckpts/mpt-30b/fp16/4-gpu \
                 --output_dir=./trt_engines/mpt-30b/fp16/4-gpu

3. Run TRT engine to check if the build was correct

# Run 4-GPU MPT7B TRT engine on a sample input prompt
mpirun -n 4 --allow-run-as-root python run.py --engine_dir ./trt_engines/mpt-30b/fp16/4-gpu/ --max_output_len 10