forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild.py
414 lines (369 loc) · 16.6 KB
/
build.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import time
import tensorrt as trt
import torch
import torch.multiprocessing as mp
from safetensors import safe_open
from transformers import AutoModelForCausalLM, GPTNeoXConfig
from weight import load_from_hf_gpt_neox
import tensorrt_llm
from tensorrt_llm.builder import Builder
from tensorrt_llm.logger import logger
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import (weight_only_groupwise_quantize,
weight_only_quantize)
from tensorrt_llm.network import net_guard
from tensorrt_llm.plugin.plugin import ContextFMHAType
from tensorrt_llm.quantization import QuantMode
MODEL_NAME = "gptneox"
hf_gpt = None
class StateDict():
def __init__(self, quant_ckpt_dir):
self.model_state_dict = safe_open(quant_ckpt_dir,
framework="pt",
device=0)
def get(self, k):
return self.model_state_dict.get_tensor(k).cpu()
class GPTQModel():
def __init__(self, model_dir, quant_ckpt_dir):
with open(model_dir + '/config.json', 'r') as f:
model_config = json.load(f)
self.config = GPTNeoXConfig()
self.config.vocab_size = model_config['vocab_size']
self.config.hidden_size = model_config['hidden_size']
self.config.num_hidden_layers = model_config['num_hidden_layers']
self.config.num_attention_heads = model_config[
'num_attention_heads']
self.config.intermediate_size = model_config['intermediate_size']
self.config.hidden_act = model_config['hidden_act']
self.config.rotary_pct = model_config['rotary_pct']
self.config.rotary_emb_base = model_config['rotary_emb_base']
self.config.max_position_embeddings = model_config[
'max_position_embeddings']
self.config.initializer_range = model_config['initializer_range']
self.config.layer_norm_eps = model_config['layer_norm_eps']
self.config.use_cache = model_config['use_cache']
self.config.bos_token_id = model_config['bos_token_id']
self.config.eos_token_id = model_config['eos_token_id']
self.config.tie_word_embeddings = model_config[
'tie_word_embeddings']
self.model_state_dict = StateDict(quant_ckpt_dir)
def state_dict(self):
return self.model_state_dict
def get_engine_name(model, dtype, tp_size, rank):
return '{}_{}_tp{}_rank{}.engine'.format(model, dtype, tp_size, rank)
def serialize_engine(engine, path):
logger.info(f'Serializing engine to {path}...')
tik = time.time()
with open(path, 'wb') as f:
f.write(bytearray(engine))
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Engine serialized. Total time: {t}')
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--world_size',
type=int,
default=1,
help='world size, only support tensor parallelism now')
parser.add_argument(
'--model_dir',
type=str,
default=None,
help='The path to HF GPT-NeoX model / checkpoints to read weights from')
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float16', 'float32'])
parser.add_argument(
'--timing_cache',
type=str,
default='model.cache',
help=
'The path of to read timing cache from, will be ignored if the file does not exist'
)
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument('--vocab_size', type=int, default=50432)
parser.add_argument('--n_layer', type=int, default=44)
parser.add_argument('--n_positions', type=int, default=2048)
parser.add_argument('--n_embd', type=int, default=6144)
parser.add_argument('--n_head', type=int, default=64)
parser.add_argument('--hidden_act', type=str, default='gelu')
parser.add_argument(
'--rotary_pct',
type=float,
default=0.25,
help="Percentage of hidden dimensions to allocate to rotary embeddings."
)
parser.add_argument('--max_batch_size', type=int, default=64)
parser.add_argument('--max_input_len', type=int, default=1024)
parser.add_argument('--max_output_len', type=int, default=1024)
parser.add_argument('--max_beam_width', type=int, default=1)
parser.add_argument('--use_gpt_attention_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'float32'])
parser.add_argument('--use_gemm_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'float32'])
parser.add_argument('--use_weight_only_quant_matmul_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16'])
parser.add_argument('--use_weight_only_groupwise_quant_matmul_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16'])
parser.add_argument(
'--groupwise_quant_safetensors_path',
type=str,
default=None,
help=
"The path to groupwise quantized GPT-NeoX model / checkpoints to read weights from."
)
parser.add_argument('--use_layernorm_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'float32'])
parser.add_argument('--parallel_build', default=False, action='store_true')
parser.add_argument('--enable_context_fmha',
default=False,
action='store_true')
parser.add_argument('--enable_context_fmha_fp32_acc',
default=False,
action='store_true')
parser.add_argument('--gpus_per_node', type=int, default=8)
parser.add_argument(
'--output_dir',
type=str,
default='gpt_outputs',
help=
'The path to save the serialized engine files, timing cache file and model configs'
)
parser.add_argument('--remove_input_padding',
default=False,
action='store_true')
parser.add_argument(
'--use_parallel_embedding',
action="store_true",
default=False,
help=
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
)
parser.add_argument(
'--embedding_sharding_dim',
type=int,
default=1, # Meta does TP on hidden dim
choices=[0, 1],
help=
'By default the embedding lookup table is sharded along vocab dimension (--embedding_sharding_dim=0). '
'To shard it along hidden dimension, set --embedding_sharding_dim=1'
'Note: embedding sharing is only enabled when --embedding_sharding_dim=0'
)
args = parser.parse_args()
logger.set_level(args.log_level)
if args.model_dir is not None:
global hf_gpt
if not args.use_weight_only_groupwise_quant_matmul_plugin:
logger.info(f'Loading HF GPT-NeoX model from {args.model_dir}...')
hf_gpt = AutoModelForCausalLM.from_pretrained(args.model_dir)
args.n_embd = hf_gpt.config.hidden_size
args.n_head = hf_gpt.config.num_attention_heads
args.n_layer = hf_gpt.config.num_hidden_layers
args.n_positions = hf_gpt.config.max_position_embeddings
args.vocab_size = hf_gpt.config.vocab_size
args.rotary_pct = hf_gpt.config.rotary_pct
else:
assert (
args.groupwise_quant_safetensors_path is not None
), f'Please set the path to the groupwise quantized GPT-NeoX checkpoints with --groupwise_quant_safetensors_path'
logger.info(
f'Loading GPTQ quantized HF GPT-NeoX model from {args.groupwise_quant_safetensors_path}...'
)
hf_gpt = GPTQModel(args.model_dir,
args.groupwise_quant_safetensors_path)
args.n_embd = hf_gpt.config.hidden_size
args.n_head = hf_gpt.config.num_attention_heads
args.n_layer = hf_gpt.config.num_hidden_layers
args.n_positions = hf_gpt.config.max_position_embeddings
args.vocab_size = hf_gpt.config.vocab_size
args.rotary_pct = hf_gpt.config.rotary_pct
return args
def build_rank_engine(builder: Builder,
builder_config: tensorrt_llm.builder.BuilderConfig,
engine_name, rank, args):
'''
@brief: Build the engine on the given rank.
@param rank: The rank to build the engine.
@param args: The cmd line arguments.
@return: The built engine.
'''
kv_dtype = trt.float16 if args.dtype == 'float16' else trt.float32
rotary_dim = int((args.n_embd // args.n_head) * args.rotary_pct)
# Initialize Module
tensorrt_llm_gpt = tensorrt_llm.models.GPTNeoXForCausalLM(
num_layers=args.n_layer,
num_heads=args.n_head,
hidden_size=args.n_embd,
vocab_size=args.vocab_size,
hidden_act=args.hidden_act,
max_position_embeddings=args.n_positions,
rotary_dim=rotary_dim,
dtype=kv_dtype,
mapping=Mapping(world_size=args.world_size,
rank=rank,
tp_size=args.world_size), # TP only
apply_query_key_layer_scaling=builder_config.
apply_query_key_layer_scaling,
use_parallel_embedding=args.use_parallel_embedding,
embedding_sharding_dim=args.embedding_sharding_dim)
if args.use_weight_only_quant_matmul_plugin:
tensorrt_llm_gpt = weight_only_quantize(tensorrt_llm_gpt)
if args.use_weight_only_groupwise_quant_matmul_plugin:
tensorrt_llm_gpt = weight_only_groupwise_quantize(
model=tensorrt_llm_gpt,
quant_mode=QuantMode(0),
group_size=128,
zero=True)
if args.model_dir is not None:
assert hf_gpt is not None, f'Could not load weights from hf_gpt model as it is not loaded yet.'
if args.world_size > 1:
assert (
args.n_embd % args.world_size == 0
), f'Embedding size/hidden size must be divisible by world size.'
assert (
args.n_head % args.world_size == 0
), f'Number of attention heads must be divisible by world size.'
load_from_hf_gpt_neox(
tensorrt_llm_gpt, hf_gpt, (args.dtype == 'float16'), rank,
args.world_size, args.use_weight_only_groupwise_quant_matmul_plugin)
# Module -> Network
network = builder.create_network()
network.trt_network.name = engine_name
if args.use_gpt_attention_plugin:
network.plugin_config.set_gpt_attention_plugin(
dtype=args.use_gpt_attention_plugin)
if args.use_gemm_plugin:
network.plugin_config.set_gemm_plugin(dtype=args.use_gemm_plugin)
if args.use_layernorm_plugin:
network.plugin_config.set_layernorm_plugin(
dtype=args.use_layernorm_plugin)
assert not (args.enable_context_fmha and args.enable_context_fmha_fp32_acc)
if args.enable_context_fmha:
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
if args.enable_context_fmha_fp32_acc:
network.plugin_config.set_context_fmha(
ContextFMHAType.enabled_with_fp32_acc)
if args.use_weight_only_quant_matmul_plugin:
network.plugin_config.set_weight_only_quant_matmul_plugin(
dtype=args.use_weight_only_quant_matmul_plugin)
if args.use_weight_only_groupwise_quant_matmul_plugin:
network.plugin_config.set_weight_only_groupwise_quant_matmul_plugin(
dtype=args.use_weight_only_groupwise_quant_matmul_plugin)
if args.world_size > 1:
network.plugin_config.set_nccl_plugin(args.dtype)
if args.remove_input_padding:
network.plugin_config.enable_remove_input_padding()
with net_guard(network):
# Prepare
network.set_named_parameters(tensorrt_llm_gpt.named_parameters())
# Forward
inputs = tensorrt_llm_gpt.prepare_inputs(args.max_batch_size,
args.max_input_len,
args.max_output_len, True,
args.max_beam_width)
tensorrt_llm_gpt(*inputs)
tensorrt_llm.graph_rewriting.optimize(network)
engine = None
# Network -> Engine
engine = builder.build_engine(network, builder_config)
if rank == 0:
config_path = os.path.join(args.output_dir, 'config.json')
builder.save_config(builder_config, config_path)
return engine
def build(rank, args):
torch.cuda.set_device(rank % args.gpus_per_node)
tensorrt_llm.logger.set_level(args.log_level)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# when doing serializing build, all ranks share one engine
apply_query_key_layer_scaling = False
builder = Builder()
cache = None
for cur_rank in range(args.world_size):
# skip other ranks if parallel_build is enabled
if args.parallel_build and cur_rank != rank:
continue
builder_config = builder.create_builder_config(
name=MODEL_NAME,
precision=args.dtype,
timing_cache=args.timing_cache if cache is None else cache,
tensor_parallel=args.world_size, # TP only
parallel_build=args.parallel_build,
num_layers=args.n_layer,
num_heads=args.n_head,
hidden_size=args.n_embd,
vocab_size=args.vocab_size,
hidden_act=args.hidden_act,
max_position_embeddings=args.n_positions,
apply_query_key_layer_scaling=apply_query_key_layer_scaling,
max_batch_size=args.max_batch_size,
max_input_len=args.max_input_len,
max_output_len=args.max_output_len)
engine_name = get_engine_name(MODEL_NAME, args.dtype, args.world_size,
cur_rank)
engine = build_rank_engine(builder, builder_config, engine_name,
cur_rank, args)
assert engine is not None, f'Failed to build engine for rank {cur_rank}'
if cur_rank == 0:
# Use in-memory timing cache for multiple builder passes.
if not args.parallel_build:
cache = builder_config.trt_builder_config.get_timing_cache()
serialize_engine(engine, os.path.join(args.output_dir, engine_name))
if rank == 0:
ok = builder.save_timing_cache(
builder_config, os.path.join(args.output_dir, "model.cache"))
assert ok, "Failed to save timing cache."
if __name__ == '__main__':
args = parse_arguments()
tik = time.time()
if args.parallel_build and args.world_size > 1 and \
torch.cuda.device_count() >= args.world_size:
logger.warning(
f'Parallelly build TensorRT engines. Please make sure that all of the {args.world_size} GPUs are totally free.'
)
mp.spawn(build, nprocs=args.world_size, args=(args, ))
else:
args.parallel_build = False
logger.info('Serially build TensorRT engines.')
build(0, args)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Total time of building all {args.world_size} engines: {t}')