forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
184 lines (163 loc) · 6.9 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import re
import torch
import transformers
import tensorrt_llm
from tensorrt_llm.runtime import ModelConfig, SamplingConfig
from build import get_engine_name # isort:skip
END_ID = 130005
PAD_ID = 3
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--max_output_len', type=int, default=1024)
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument('--engine_dir', type=str, default='trtModel')
parser.add_argument('--beam_width', type=int, default=1)
parser.add_argument(
'--input_text',
type=str,
nargs='*',
default=["Hello", "Could you introduce NVIDIA Corporation for me?"])
parser.add_argument(
'--input_tokens',
type=str,
help='CSV file containing tokenized input. Alternative to text input.',
default=None)
parser.add_argument('--tokenizer_dir',
type=str,
default='pyTorchModel',
help='Directory containing the tokenizer model.')
return parser.parse_args()
def process_response(responseList):
for i, response in enumerate(responseList):
response = response.strip()
punkts = [
[",", ","],
["!", "!"],
[":", ":"],
[";", ";"],
["\?", "?"],
]
for item in punkts:
response = re.sub(r"([\u4e00-\u9fff])%s" % item[0],
r"\1%s" % item[1], response)
response = re.sub(r"%s([\u4e00-\u9fff])" % item[0],
r"%s\1" % item[1], response)
responseList[i] = response
return responseList
if __name__ == '__main__':
args = parse_arguments()
tensorrt_llm.logger.set_level(args.log_level)
config_path = os.path.join(args.engine_dir, 'config.json')
with open(config_path, 'r') as f:
config = json.load(f)
use_gpt_attention_plugin = config['plugin_config']['gpt_attention_plugin']
dtype = config['builder_config']['precision']
world_size = config['builder_config']['tensor_parallel']
assert world_size == tensorrt_llm.mpi_world_size(), \
f'Engine world size ({world_size}) != Runtime world size ({tensorrt_llm.mpi_world_size()})'
num_heads = config['builder_config']['num_heads'] // world_size
hidden_size = config['builder_config']['hidden_size'] // world_size
vocab_size = config['builder_config']['vocab_size']
num_layers = config['builder_config']['num_layers']
runtime_rank = tensorrt_llm.mpi_rank()
runtime_mapping = tensorrt_llm.Mapping(world_size,
runtime_rank,
tp_size=world_size)
torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node)
engine_name = get_engine_name('chatglm6b', dtype, world_size, runtime_rank)
serialize_path = os.path.join(args.engine_dir, engine_name)
tokenizer = transformers.AutoTokenizer.from_pretrained(
args.tokenizer_dir, trust_remote_code=True)
input_ids = None
input_text = None
if args.input_tokens is None:
input_text = args.input_text
tokenized = tokenizer(input_text,
return_tensors="pt",
padding=True,
return_length=True)
input_ids = tokenized['input_ids'].int().contiguous().cuda()
input_lengths = tokenized['length'].int().contiguous().cuda()
else:
input_ids = []
with open(args.input_tokens) as f_in:
for line in f_in:
for e in line.strip().split(','):
input_ids.append(int(e))
input_text = "<ids from file>"
input_ids = torch.tensor(input_ids,
dtype=torch.int32).cuda().unsqueeze(0)
input_ids_padding_right = torch.zeros_like(input_ids) + END_ID
for i, sample in enumerate(input_ids):
nPadding = 0
for token in sample:
if token == PAD_ID:
nPadding += 1
else:
break
input_ids_padding_right[i, :len(sample[nPadding:])] = sample[nPadding:]
input_ids = input_ids_padding_right
input_ids_padding_right = torch.zeros_like(input_ids) + END_ID
for i, sample in enumerate(input_ids):
nPadding = 0
for token in sample:
if token == PAD_ID:
nPadding += 1
else:
break
input_ids_padding_right[i, :len(sample[nPadding:])] = sample[nPadding:]
input_ids = input_ids_padding_right
model_config = ModelConfig(model_name="chatglm6b",
num_heads=num_heads,
num_kv_heads=num_heads,
hidden_size=hidden_size,
vocab_size=vocab_size,
num_layers=num_layers,
gpt_attention_plugin=use_gpt_attention_plugin,
dtype=dtype)
sampling_config = SamplingConfig(
end_id=END_ID,
pad_id=PAD_ID,
top_k=1,
top_p=1.0,
num_beams=args.beam_width,
)
sampling_config.random_seed = 1
with open(serialize_path, 'rb') as f:
engine_buffer = f.read()
decoder = tensorrt_llm.runtime.ChatGLM6BHeadModelGenerationSession(
model_config, engine_buffer, runtime_mapping)
decoder.setup(input_ids.size(0), input_ids.size(1), args.max_output_len,
args.beam_width)
output_ids = decoder.decode(input_ids, input_lengths, sampling_config)
torch.cuda.synchronize()
for i in range(len(output_ids.tolist())):
output_beams_list = [
tokenizer.batch_decode(output_ids[batch_idx, :,
input_lengths[batch_idx]:],
skip_special_tokens=True)
for batch_idx in range(input_lengths.size(0))
]
output_text = process_response(output_beams_list[i])
print("Input --->\n%s" % input_text[i])
print("Output --->")
for j, simple_output in enumerate(output_text):
print("Beam %2d--->\n%s" % (j, simple_output))
print("Finished!")