-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdraw.py
executable file
·240 lines (214 loc) · 8.1 KB
/
draw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#!/usr/local/bin/python3
import os
import json
import pandas as pd
import shutil
import matplotlib.pyplot as plt
from pandas.api.types import CategoricalDtype
import argparse
parser = argparse.ArgumentParser(
description="Handle data of hello bench to csv and png"
)
parser.add_argument(
"-d", type=str, default="data", help="data directory", required=True
)
parser.add_argument(
"-r", type=str, default="result", help="result directory", required=True
)
args = parser.parse_args()
data_dir = args.d
result_dir = args.r
sub_data_dir = "csv"
sub_picture_dir = "png"
print("data_dir: %s, result_dir: %s" % (data_dir, result_dir))
def to_csv():
average_list = []
for current_dir, _, file_list in os.walk(data_dir):
for filename in file_list:
filename_path = os.path.join(current_dir, filename)
print("file: ", filename_path)
with open(filename_path) as f:
for line in f.readlines():
if line.strip() != "":
json_line = json.loads(line)
image = json_line["bench"]
pull_time = json_line["pull_time"]
create_time = json_line["create_time"]
run_time = json_line["run_time"]
average_list.append(
{
"image": image,
"pull": pull_time,
"create": create_time,
"run": run_time,
}
)
average_df = pd.DataFrame(average_list)
all_data = dict()
for image, data in average_df.groupby("image"):
single_data = [
{
"image": image,
"type": "pull",
"mean": data["pull"].mean(),
"p25": data["pull"].quantile(0.25),
"p50": data["pull"].quantile(0.5),
"p75": data["pull"].quantile(0.75),
"p90": data["pull"].quantile(0.90),
"p95": data["pull"].quantile(0.95),
"p99": data["pull"].quantile(0.99),
"p100": data["pull"].quantile(1),
},
{
"image": image,
"type": "create",
"mean": data["create"].mean(),
"p25": data["create"].quantile(0.25),
"p50": data["create"].quantile(0.5),
"p75": data["create"].quantile(0.75),
"p90": data["create"].quantile(0.90),
"p95": data["create"].quantile(0.95),
"p99": data["create"].quantile(0.99),
"p100": data["create"].quantile(1),
},
{
"image": image,
"type": "run",
"mean": data["run"].mean(),
"p25": data["run"].quantile(0.25),
"p50": data["run"].quantile(0.5),
"p75": data["run"].quantile(0.75),
"p90": data["run"].quantile(0.90),
"p95": data["run"].quantile(0.95),
"p99": data["run"].quantile(0.99),
"p100": data["run"].quantile(1),
},
]
image_name = image.split(":")[0]
if image_name in all_data.keys():
all_data[image_name] = all_data[image_name] + single_data
else:
all_data[image_name] = single_data
if os.path.exists(result_dir):
shutil.rmtree(result_dir, ignore_errors=True)
os.mkdir(result_dir)
os.mkdir(os.path.join(result_dir, "/", sub_data_dir))
os.mkdir(os.path.join(result_dir, "/", sub_picture_dir))
type_order = CategoricalDtype(["pull", "create", "run"], ordered=True)
all_data_pd_line = []
for key in all_data:
data_pd = pd.DataFrame(all_data[key])
data_pd["type"] = data_pd["type"].astype(type_order)
data_pd.sort_values(by="type", inplace=True, ascending=True)
print(key, data_pd)
data_pd.to_csv(os.path.join(result_dir, "/", sub_data_dir, "/", key, ".csv"))
for image_name, image_data in data_pd.groupby("image"):
all_data_pd_line = all_data_pd_line + [
{
"image": image_name,
"pull": image_data[image_data["type"] == "pull"]["mean"].mean(),
"create": image_data[image_data["type"] == "create"]["mean"].mean(),
"run": image_data[image_data["type"] == "run"]["mean"].mean(),
}
]
all_data_pd = pd.DataFrame(all_data_pd_line)
all_data_pd.to_csv(os.path.join(result_dir, "/", "all_mean.csv"))
def draw():
if os.path.exists(os.path.join(result_dir, "/", sub_picture_dir)):
shutil.rmtree(
os.path.join(result_dir, "/", sub_picture_dir), ignore_errors=True
)
os.mkdir(os.path.join(result_dir, "/", sub_picture_dir))
for current_dir, _, file_list in os.walk(
os.path.join(result_dir, "/", sub_data_dir)
):
for filename in file_list:
filename_path = os.path.join(current_dir, filename)
print("file: ", filename_path)
data_pd = pd.read_csv(filename_path)
print(data_pd)
for index, data_series in data_pd.iterrows():
picture_path = os.path.join(
result_dir,
"/",
sub_picture_dir,
"/",
data_series["image"].split(":")[0],
)
if not os.path.exists(picture_path):
os.mkdir(picture_path)
x = ["mean", "p25", "p50", "p75", "p90", "p95", "p99", "p100"]
y = data_series.to_frame().values.T[0][3:]
data = pd.DataFrame(
{
"type": x,
"data": y,
}
)
print(data)
data.plot(
kind="bar",
x="type",
rot=0,
title="image: "
+ data_series["image"]
+ " ("
+ data_series["type"]
+ ")",
legend=False,
)
plt.xlabel(None)
plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9)
plt.savefig(
os.path.join(
picture_path,
"/",
data_series["image"].replace(":", "-"),
"_",
data_series["type"],
".png",
)
)
def draw_all():
all_data_pd = pd.read_csv(
os.path.join(result_dir, "/", "all_mean.csv"), index_col=0
)
print(all_data_pd)
all_data = dict()
for image, data in all_data_pd.groupby("image"):
single_data = [
{
"image": image,
"pull": data["pull"].mean(),
"create": data["create"].mean(),
"run": data["run"].mean(),
}
]
image_name = image.split(":")[0]
if image_name in all_data.keys():
all_data[image_name] = all_data[image_name] + single_data
else:
all_data[image_name] = single_data
for key in all_data:
data_pd = pd.DataFrame(all_data[key])
fig, ax = plt.subplots()
print(data_pd)
ax.bar(data_pd["image"], data_pd["pull"], label="pull")
ax.bar(
data_pd["image"], data_pd["create"], bottom=data_pd["pull"], label="create"
)
ax.bar(
data_pd["image"],
data_pd["run"],
bottom=data_pd["pull"] + data_pd["create"],
label="run",
)
ax.legend(bbox_to_anchor=(1.26, 1))
plt.subplots_adjust(left=0.12, bottom=0.32, right=0.798, top=0.88)
plt.xticks(rotation=45)
plt.ylabel("time(s)")
plt.savefig(os.path.join(result_dir, "/", key, ".png"))
if __name__ == "__main__":
to_csv()
draw()
draw_all()