-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathccpts.cpp
818 lines (667 loc) · 26.9 KB
/
ccpts.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
#include <bits/stdc++.h>
#include "globals.h"
using namespace std;
#define endl '\n'
#define IOS ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);
const int N = 10000;
int getNoOfFlits(int messageSize);
class NoC;
class Node;
class ProcessingElement;
class Task{
int id;
// ProcessingElement allotedProcessor;
ProcessingElement* allotedProcessor;
// int processingElement;
int startTime;
int endTime;
public:
Task(int id){
this->id = id;
}
int getTaskId(){
return this->id;
}
pair<int,int> getStartEndTime(){
return pair<int, int>(this->startTime, this->endTime);
}
void setStartEndTime(int startTime, int endTime){
this->startTime = startTime;
this->endTime = endTime;
}
};
class MessageFlit{
public:
int id;
string message_id;
MessageFlit(int id, string message_id){
this->id = id;
this->message_id = message_id;
}
// route the flit to the destination using xy routing and update the ports and schedule
NoC routeXY(NoC noc, MessageFlit flit, Node sourceNode, Node destinationNode, int startTime);
};
class Message{
public:
string id;
int sourceTaskId;
int destinationTaskID;
int messageSize;
vector<MessageFlit> flits;
// intialising the message
Message(int sourceTaskId, int destinationTaskID, int messageSize){
// message id is 100 * source task id + dest task id
// ex : message from task 1 to task 2 is m_1002
this->id = to_string(sourceTaskId * 100) + to_string(destinationTaskID);
this->sourceTaskId = sourceTaskId;
this->destinationTaskID = destinationTaskID;
this->messageSize = messageSize;
MessageFlit dummy_flit = MessageFlit(0, "0");
flits.push_back(dummy_flit);
int no_of_flits = getNoOfFlits(messageSize);
for (int i = 1; i <= no_of_flits; i++){
MessageFlit new_flit = MessageFlit(i, id);
flits.push_back(new_flit);
}
}
MessageFlit getFlit(int i){
return flits[i];
}
};
enum Direction {
NORTH, SOUTH, EAST, WEST, NONE
};
class UnitPortSlot{
MessageFlit messageFlit;
Direction direction;
friend class Port;
friend class MessageFlit;
public:
UnitPortSlot() : messageFlit(0, "0"), direction(NONE){
messageFlit = MessageFlit(0, "0");
direction = NONE;
}
};
class Port{
vector<UnitPortSlot> portSchedule;
friend class Router;
friend class MessageFlit;
public:
Port() : portSchedule(10000) {
}
int updateSchedule(int time, MessageFlit flit, Direction direction, int message_size) {
int updatedTime = time;
int consecutiveEmptySlots = 0;
int startSlot = -1;
while (updatedTime < 10000) {
if (portSchedule[updatedTime].direction == NONE) {
if (consecutiveEmptySlots == 0) {
startSlot = updatedTime;
}
consecutiveEmptySlots++;
if (consecutiveEmptySlots == message_size) {
for (int i = startSlot; i < startSlot + message_size; i++) {
portSchedule[i].messageFlit = flit;
portSchedule[i].direction = direction;
}
return updatedTime - time + 1;
}
} else {
consecutiveEmptySlots = 0;
startSlot = -1;
}
updatedTime++;
}
cout << "Error: Port is full" << endl;
return -1;
}
void print(int t){
for (int i = 0 ;i < t; i++){
cout<<portSchedule[i].messageFlit.message_id<<"_"<<portSchedule[i].messageFlit.id<<":"<<portSchedule[i].direction<<endl;
}
}
};
class Router{
// int id;
// int location_x;
// int location_y;
friend class Node;
friend class MessageFlit;
public:
Port northPort;
Port southPort;
Port eastPort;
Port westPort;
Port localPort;
friend class Node;
friend class MessageFlit;
public:
Router(){
northPort = Port();
southPort = Port();
eastPort = Port();
westPort = Port();
localPort = Port();
}
};
class ProcessingElement{
// int id;
// int location_x;
// int location_y;
public:
vector<Task> processingElementSchedule;
ProcessingElement(){
Task dummy_task = Task(0);
vector<Task> zeroSchedule(10000, dummy_task);
this->processingElementSchedule = zeroSchedule;
}
void print(){
for(int i = 0; i<20;i++){
cout<<this->processingElementSchedule[i].getTaskId()<<endl;
}
}
int getEarliestAvailTime(int currentTime, int executionTime);
pair<int, int> allocateProcessor(int taskId, int earliestTime, int executionTime);
};
class Node{
// int id;
int locationX;
int locationY;
friend class NoC;
friend class MessageFlit;
public:
Router router;
ProcessingElement processingElement;
Node(int y, int x){
this->locationX = x;
this->locationY = y;
router = Router();
}
int getLocationX(){
return locationX;
}
int getLocationY(){
return locationY;
}
pair<int, int> getLocation(){
return pair<int, int>(locationY, locationX);
}
};
class NoC{
int n;
friend class MessageFlit;
public:
vector<Node> nodes;
// intialising the noc architecture
NoC(int n){
this->n = n;
Node dummy_node = Node(0, 0);
nodes.push_back(dummy_node);
for (int i = 1; i <= n; i++){
for (int j = 1; j <= n ; j++){
Node new_node = Node(i, j);
nodes.push_back(new_node);
}
}
}
Node getNode(int i){
return nodes[i];
}
int getN(){
return n;
}
void print(){
for (int i = 1; i <= n*n; i++){
cout << nodes[i].getLocationY() << " " << nodes[i].getLocationX() << endl;
}
}
vector<int> getNeighbors(int nodeId);
vector<Message> getMessagePriorityList(int taskId, int tentProcessorId, int task_graph[1000][1000], map<int, int> task_processor_mappings, map<int, pair<int, int>> tasks_start_end_times);
};
double getTaskRank(int task_graph[1000][1000], int execution_time_matrix[1000][1000], map<int, double> task_ranks, int task_id){
// this fucntion returns the task rank for a given task
bool sink_node = true;
if (task_ranks[task_id] != 0) return task_ranks[task_id];
for (int i = 1; i <= no_of_tasks; i++){
if (task_graph[task_id][i] != 0){
sink_node = false;
break;
}
}
double sum_exec_time = 0;
for (int i = 1; i <= n*n ; i++ ){
sum_exec_time += execution_time_matrix[task_id][i];
}
double avg_exec_time = sum_exec_time / (n * n * 1.0);
if (sink_node) return avg_exec_time;
else{
// max_succ_task_rank = P(T_j) + CC_i,j Tj is successor of Ti
double max_succ_task_rank = 0;
// recursively calling this function to calculate the ranks of all the tasks
for (int i = 1; i<= no_of_tasks; i++){
if (task_graph[task_id][i]!=0) max_succ_task_rank = max(max_succ_task_rank, getTaskRank(task_graph, execution_time_matrix, task_ranks, i) + task_graph[task_id][i]);
}
task_ranks[task_id] = avg_exec_time + max_succ_task_rank;
return task_ranks[task_id];
}
return 0.0;
}
bool sortByDecreasingValue(const std::pair<int, int>& a, const std::pair<int, int>& b) {
return a.second > b.second; // Sort in descending order of ranks
}
int getManhattanDistance(int sourceProcessorId, int destProcessorId){
int source_x = (sourceProcessorId - 1) % n + 1;
int source_y = (sourceProcessorId - 1) / n + 1;
int dest_x = (destProcessorId - 1) % n + 1;
int dest_y = (destProcessorId - 1) / n + 1;
return abs(source_x - dest_x) + abs(source_y - dest_y);
}
double getPCMValue(int task_graph[1000][1000], int execution_time_matrix[1000][1000], int pcm[300][300], int task_id, int processor_id){
bool sink_node = true;
if (pcm[task_id][processor_id] != 0)return pcm[task_id][processor_id];
for (int i = 1; i <= no_of_tasks; i++){
if (task_graph[task_id][i] != 0){
sink_node = false;
break;
}
}
double max_succ_task_pcm = 0;
if (sink_node) return execution_time_matrix[task_id][processor_id];
else{
for (int i = 1; i<= no_of_tasks; i++){
double min_task_pcm = INT_MAX*1.0;
if (task_graph[task_id][i]!=0) {
for (int j = 1; j <= n*n; j++){
int comm_dist = getManhattanDistance(processor_id, j);
pcm[i][j] = getPCMValue(task_graph, execution_time_matrix, pcm, i, j);
min_task_pcm = min(min_task_pcm, pcm[i][j] + execution_time_matrix[i][j] + execution_time_matrix[task_id][j] + comm_dist * 1.0);
}
max_succ_task_pcm = max(max_succ_task_pcm, min_task_pcm);
}
}
}
return max_succ_task_pcm;
}
vector<int> generateTaskPriorityList(int task_graph[1000][1000], int execution_time_matrix[1000][1000]){
map<int, double> task_ranks;
vector<int> task_priority_list;
int pcm[300][300];
for(int i = 1; i <= no_of_tasks; i++){
for (int j = 1; j<=n*n; j++){
pcm[i][j] = getPCMValue(task_graph, execution_time_matrix, pcm, i, j);
}
}
for(int i = 1; i <= no_of_tasks; i++){
double sum_pcm = 0;
for (int j = 1; j<=n*n; j++){
sum_pcm += pcm[i][j];
}
task_ranks[i] = sum_pcm / (n*n);
}
// sorting the tasks based on decreasing order of their ranks
vector<pair<int, double> > taskid_rank_pairs(task_ranks.begin(), task_ranks.end());
sort(taskid_rank_pairs.begin(), taskid_rank_pairs.end(), sortByDecreasingValue);
for (auto taskid_rank_pair : taskid_rank_pairs){
task_priority_list.push_back(taskid_rank_pair.first);
}
return task_priority_list;
}
int ProcessingElement::getEarliestAvailTime(int currentTime, int executionTime){
// this function returns the earlisest avail time for an processor
int count = 0;
int earliestAvailTime = 0;
for (int i = currentTime; i < 10000; i++) {
if (this->processingElementSchedule[i].getTaskId() == 0) {
count++;
if (count == executionTime) {
earliestAvailTime = i - executionTime + 1;
return earliestAvailTime;
}
} else {
count = 0;
}
}
return earliestAvailTime;
}
pair<int,int> ProcessingElement::allocateProcessor(int taskId, int earliestTime, int executionTime){
Task allotedTask = Task(taskId);
int startTime = 0;
int endTime = 0;
int count = 0;
// this function allocates the task to processor after checking vacancy and allocates at earliest avail time
for (int i = earliestTime; i < 10000; i++) {
if (this->processingElementSchedule[i].getTaskId() == 0) {
count++;
if (count == executionTime) {
for (int j = i - executionTime + 1; j <= i; ++j) {
this->processingElementSchedule[j] = allotedTask;
}
startTime = i - executionTime + 1;
endTime = startTime + executionTime;
break;
}
} else {
count = 0;
}
}
return pair<int,int> (startTime, endTime);
}
vector<int> getPredTaskIds(int taskId, int task_graph[1000][1000]){
// this function returns the predecessor task ids of a given task in task graph
vector<int> pred_task_ids;
for (int i = 1; i <= no_of_tasks; i++) {
if (task_graph[i][taskId]!=0)pred_task_ids.push_back(i);
}
return pred_task_ids;
}
vector<int> NoC::getNeighbors(int nodeId){
vector<int> neighbors;
int row = (nodeId - 1) / n;
int col = (nodeId - 1) % n;
if (row > 0) // North neighbor
neighbors.push_back(nodeId - n);
if (row < n - 1) // South neighbor
neighbors.push_back(nodeId + n);
if (col > 0) // West neighbor
neighbors.push_back(nodeId - 1);
if (col < n - 1) // East neighbor
neighbors.push_back(nodeId + 1);
return neighbors;
}
int getNoOfFlits(int messageSize){
// this is function to calucate no of flits for given message size
if (messageSize%b_w == 0){
return messageSize/b_w;
}
return messageSize/b_w + 1;
}
vector<Message> NoC::getMessagePriorityList(int taskId, int tentProcessorId, int task_graph[1000][1000], map<int, int> task_processor_mappings, map<int, pair<int, int>> tasks_start_end_times){
vector<Message> message_priority_list;
vector<int> pred_task_ids;
pred_task_ids = getPredTaskIds(taskId, task_graph);
// earliest pred task completion
for (auto pred_task_id : pred_task_ids){
Message message = Message(pred_task_id, taskId, task_graph[pred_task_id][taskId]);
message_priority_list.push_back(message);
}
return message_priority_list;
}
vector<vector<int>> generateShortestPath(int source, int dest) {
// grid is just a 2d array from 1 to n^2
vector<vector<int>> grid(n, vector<int>(n));
int count = 1;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
grid[i][j] = count++;
}
}
// this (dx, dy) pairs denotes the neighbors
vector<int> dx = {-1, 1, 0, 0};
vector<int> dy = {0, 0, -1, 1};
// maintaining queue for bfs
queue<vector<int>> q;
unordered_map<int, vector<vector<int>>> shortest_path_from_source;
q.push({source});
shortest_path_from_source[source] = {{source}};
while (!q.empty()) {
// using first route of the queue and last node of that route
vector<int> curr = q.front();
q.pop();
int last_node = curr.back();
if (last_node == dest) continue;
int x = (last_node - 1) / n;
int y = (last_node - 1) % n;
// exploring different possiblities and routes between nodes and updating shortest paths
for (int k = 0; k < 4; ++k) {
int nx = x + dx[k];
int ny = y + dy[k];
if (nx >= 0 && nx < n && ny >= 0 && ny < n) {
int neighbor_node = grid[nx][ny];
if (shortest_path_from_source.find(neighbor_node) == shortest_path_from_source.end() ||
shortest_path_from_source[neighbor_node][0].size() == curr.size() + 1) {
vector<int> new_path = curr;
new_path.push_back(neighbor_node);
shortest_path_from_source[neighbor_node].push_back(new_path);
q.push(new_path);
}
}
}
}
// Return all shortest paths from source to destination
return shortest_path_from_source[dest];
}
map<string, vector<vector<int> > > generateShortestPaths(){
// generation shortest paths from all processors to all other processors
map<string, vector<vector<int> > > shortest_paths_map;
for(int i = 1 ; i<=n * n ;i++){
for(int j = 1 ; j<=n * n;j++){
if (i == j)continue;
else{
string route_id = to_string(i * 100) + to_string(j);
shortest_paths_map[route_id] = generateShortestPath(i, j);
}
}
}
return shortest_paths_map;
}
Direction getDirection(int sourceNodeId, int neighborNodeId){
// to get the direction from source to neighbor in n x n architecture
if (sourceNodeId + 1 == neighborNodeId) return EAST;
else if(sourceNodeId - 1 == neighborNodeId) return WEST;
else if(sourceNodeId + n == neighborNodeId) return SOUTH;
else if(sourceNodeId - n == neighborNodeId) return NORTH;
return NONE;
}
int routeMessageXY(Message m_ij, NoC &noc, int sourceProcessorId, int destProcessorId, int startTime){
int no_of_flits = getNoOfFlits(m_ij.messageSize);
int transmission_time_message = 0;
for (int i = 1; i <= no_of_flits; i++){
int transmission_time_flit = 0;
int source_x = (sourceProcessorId - 1) % n + 1;
int source_y = (sourceProcessorId - 1) / n + 1;
int dest_x = (destProcessorId - 1) % n + 1;
int dest_y = (destProcessorId - 1) / n + 1;
int cur_x = source_x;
int cur_y = source_y;
bool dir_change = false;
while(!(cur_x == dest_x && cur_y == dest_y)){
bool is_source_node = false;
int node_id = (cur_y - 1) * n + cur_x;
if (cur_x == source_x && cur_y == source_y) is_source_node = true;
if(cur_x > dest_x){
if (is_source_node){
transmission_time_flit = noc.nodes[node_id].router.localPort.updateSchedule(startTime, m_ij.flits[i], WEST, m_ij.messageSize * 1.0);
}else{
transmission_time_flit += noc.nodes[node_id].router.eastPort.updateSchedule(startTime + transmission_time_flit, m_ij.flits[i], WEST, m_ij.messageSize * 1.0);
}
cur_x--;
if (cur_x == dest_x) dir_change = true;
}else if (cur_x < dest_x){
if (is_source_node){
transmission_time_flit = noc.nodes[node_id].router.localPort.updateSchedule(startTime, m_ij.flits[i], EAST, m_ij.messageSize * 1.0);
}else{
transmission_time_flit += noc.nodes[node_id].router.eastPort.updateSchedule(startTime + transmission_time_flit, m_ij.flits[i], EAST, m_ij.messageSize * 1.0);
}
cur_x++;
if (cur_x == dest_x) {dir_change = true;}
}else{
if(cur_y > dest_y){
if (is_source_node){
transmission_time_flit = noc.nodes[node_id].router.localPort.updateSchedule(startTime, m_ij.flits[i], NORTH, m_ij.messageSize * 1.0);
}else if(dir_change){
if (source_x < dest_x) transmission_time_flit += noc.nodes[node_id].router.westPort.updateSchedule(startTime + transmission_time_flit, m_ij.flits[i], NORTH, m_ij.messageSize * 1.0);
if (source_x > dest_x) transmission_time_flit += noc.nodes[node_id].router.eastPort.updateSchedule(startTime + transmission_time_flit, m_ij.flits[i], NORTH, m_ij.messageSize * 1.0);
dir_change = false;
}else{
transmission_time_flit += noc.nodes[node_id].router.northPort.updateSchedule(startTime + transmission_time_flit, m_ij.flits[i], NORTH, m_ij.messageSize * 1.0);
}
cur_y--;
}else if(cur_y < dest_y){
if (is_source_node){
transmission_time_flit = noc.nodes[node_id].router.localPort.updateSchedule(startTime, m_ij.flits[i], SOUTH, m_ij.messageSize * 1.0);
}else if(dir_change){
if (source_x < dest_x) transmission_time_flit += noc.nodes[node_id].router.westPort.updateSchedule(startTime + transmission_time_flit, m_ij.flits[i], SOUTH, m_ij.messageSize * 1.0);
if (source_x > dest_x) transmission_time_flit += noc.nodes[node_id].router.eastPort.updateSchedule(startTime + transmission_time_flit, m_ij.flits[i], SOUTH, m_ij.messageSize * 1.0);
dir_change = false;
}else{
transmission_time_flit += noc.nodes[node_id].router.southPort.updateSchedule(startTime + transmission_time_flit, m_ij.flits[i], SOUTH, m_ij.messageSize * 1.0);
}
cur_y++;
}
}
}
transmission_time_message = max(transmission_time_message, transmission_time_flit);
}
return startTime + transmission_time_message;
}
int main() {
IOS
#ifndef ONLINE_JUDGE
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
#endif
srand(time(0));
// intialising variables to store neccessary information
int task_graph[1000][1000];
int execution_time_matrix[1000][1000];
vector<int> task_priority_list;
map<int, int> task_processor_mappings;
// cout<<"Enter the size of n x n mesh NoC:";
cin>>n;
// cout<<"Enter number of tasks :";
cin>>no_of_tasks;
// cout<<"Input the adjancy matrix :";
for (int i = 1; i <= no_of_tasks; i++) {
for (int j = 1; j <= no_of_tasks; j++) {
cin >> task_graph[i][j];
// if (task_graph[i][j] == 1){
// task_graph[i][j] = rand() % 21 + 10;
// }
}
}
cout<<"Task Graph"<<endl;
for (int i = 1; i <= no_of_tasks; i++) {
for (int j = 1; j <= no_of_tasks; j++) {
cout<<task_graph[i][j]<<" ";
}
cout<<endl;
}
// input execution times
for (int i = 1; i <= no_of_tasks; i++) {
for (int j = 1; j <= n * n ; j++) {
cin >> execution_time_matrix[i][j];
}
}
// OR
// generate random execution times
// for (int i = 1; i <= no_of_tasks; i++) {
// for (int j = 1; j <= n * n ; j++) {
// execution_time_matrix[i][j] = rand() % 21 + 10;
// }
// }
cout<<"Execution time matrix"<<endl;
for (int i = 1; i <= no_of_tasks; i++) {
for (int j = 1; j <= n * n ; j++) {
cout<<execution_time_matrix[i][j]<<" ";
}
cout<<endl;
}
cout<<endl;
// creating task priority list
task_priority_list = generateTaskPriorityList(task_graph, execution_time_matrix);
for (auto a : task_priority_list){
cout<<a<<" ";
}
cout<<endl;
// return 0;
// computing all possible shortest paths and storing them in a map
map<string, vector<vector<int>>> all_shortest_paths = generateShortestPaths();
map<int, pair<int, int>> tasks_start_end_times;
NoC noc = NoC(n);
for(int i = 0; i<task_priority_list.size();i++){
if (i==0){// if task is sink task
int min_exec_time_proccesor_id = 0;
int min_exec_time = INT_MAX;
for (int j = 1; j<=n*n ; j++){
if (min_exec_time > execution_time_matrix[task_priority_list[i]][j]){
min_exec_time_proccesor_id = j;
min_exec_time = execution_time_matrix[task_priority_list[i]][j];
}
}
tasks_start_end_times[task_priority_list[i]] = noc.nodes[min_exec_time_proccesor_id].processingElement.allocateProcessor(task_priority_list[i], 0, execution_time_matrix[task_priority_list[i]][min_exec_time_proccesor_id]);
task_processor_mappings[task_priority_list[i]] = min_exec_time_proccesor_id;
}else{
vector<int> possible_processors;
vector<int> pred_task_ids;
// getting predecessor tasks ids and and processors and their neighbors
pred_task_ids = getPredTaskIds(task_priority_list[i], task_graph);
for (auto pred_task_id : pred_task_ids){
possible_processors.push_back(task_processor_mappings[pred_task_id]);
vector<int> neighbors;
neighbors = noc.getNeighbors(task_processor_mappings[pred_task_id]);
for (auto neighbor :neighbors)possible_processors.push_back(neighbor);
}
set<int> unique_processors(possible_processors.begin(), possible_processors.end());
possible_processors.assign(unique_processors.begin(), unique_processors.end());
int min_eft = INT_MAX;
int min_eft_possible_processor = 0;
for (auto possible_processor : possible_processors){
// tentiative allocation to find optimal processor
int est = 0;
int actual_est = 0;
int eft = 0;
NoC noc_1 = noc; // dummy noc to check possibility
vector<Message> msg_priority_list = noc.getMessagePriorityList(task_priority_list[i], possible_processor, task_graph, task_processor_mappings, tasks_start_end_times);
for (auto msg : msg_priority_list){
int source_task_id = msg.sourceTaskId;
est = max(est, routeMessageXY(msg, noc_1, task_processor_mappings[source_task_id], possible_processor, tasks_start_end_times[source_task_id].second));
}
pair<int, int>start_end_times = noc_1.nodes[possible_processor].processingElement.allocateProcessor(task_priority_list[i], est, execution_time_matrix[task_priority_list[i]][possible_processor]);
actual_est = start_end_times.first;
eft = start_end_times.second;
cout<<"task : "<<task_priority_list[i]<<", processor : "<<possible_processor<<", eft : "<<eft<<endl;
if (eft < min_eft){
min_eft = eft;
min_eft_possible_processor = possible_processor;
}
}
cout<<endl;
// permanent allocation
int est = 0;
int actual_est = 0;
vector<Message> msg_priority_list = noc.getMessagePriorityList(task_priority_list[i], min_eft_possible_processor, task_graph, task_processor_mappings, tasks_start_end_times);
for (auto msg : msg_priority_list){
int source_task_id = msg.sourceTaskId;
est = max(est, routeMessageXY(msg, noc, task_processor_mappings[source_task_id], min_eft_possible_processor, tasks_start_end_times[source_task_id].second));
}
task_processor_mappings[task_priority_list[i]] = min_eft_possible_processor;
tasks_start_end_times[task_priority_list[i]] = noc.nodes[min_eft_possible_processor].processingElement.allocateProcessor(task_priority_list[i], est, execution_time_matrix[task_priority_list[i]][min_eft_possible_processor]);
}
}
cout<<"FINAL ALLOCATION, START AND END TIMES"<<endl;
cout<<endl;
for(auto task : task_priority_list){
cout<<"TASK - "<<task<<"(processor : "<<task_processor_mappings[task]<<")"<<endl;
cout<<tasks_start_end_times[task].first<<" "<<tasks_start_end_times[task].second<<endl;
}
double speedup = 0.0;
int min_sum_exec_times = INT_MAX;
for (int j =1; j<=n*n;j++){
int sum_exec_times = 0;
for (int i = 1; i<=no_of_tasks; i++ ){
sum_exec_times += execution_time_matrix[i][j];
}
min_sum_exec_times = min(min_sum_exec_times, sum_exec_times);
}
int makespan = 0;
for (auto task : task_priority_list){
makespan = max(makespan, tasks_start_end_times[task].second);
}
speedup = (min_sum_exec_times *1.0) / (makespan * 1.0);
cout<<"Makespan : "<<makespan<<endl;
cout<<"Speedup : "<<speedup<<endl;
#ifndef ONLINE_JUDGE
cerr << "\ntime taken : " << (float)clock() / CLOCKS_PER_SEC << " secs " << endl;
#endif
return 0;
}