-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmediapipe_functions.py
315 lines (232 loc) · 12.3 KB
/
mediapipe_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import cv2
import time
import numpy as np
import os
from matplotlib import pyplot as plt
import mediapipe as mp
mp_holistic = mp.solutions.holistic # Holistic model
mp_drawing = mp.solutions.drawing_utils # Drawing utilities
# Make keypoint detection, model can only detect in RGB
def mediapipe_detection(image, model):
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # COLOR CONVERSION BGR 2 RGB as model can only detect in RGB
image.flags.writeable = False # Image is no longer writeable
results = model.process(image) # Use Model to make prediction
image.flags.writeable = True # Image is now writeable
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # COLOR COVERSION RGB 2 BGR
return image, results
def draw_landmarks(image, results): # draw landmarks for each image/frame
mp_drawing.draw_landmarks(image, results.face_landmarks, mp_holistic.FACEMESH_CONTOURS) # Draw face connections
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_holistic.POSE_CONNECTIONS) # Draw pose connections
mp_drawing.draw_landmarks(image, results.left_hand_landmarks, mp_holistic.HAND_CONNECTIONS) # Draw left hand connections
mp_drawing.draw_landmarks(image, results.right_hand_landmarks, mp_holistic.HAND_CONNECTIONS) # Draw right hand connections
def draw_styled_landmarks(image, results): # draw landmarks for each image/frame, fix colour of landmark drawn
# Draw face connections
#mp_drawing.draw_landmarks(image, results.face_landmarks, mp_holistic.FACEMESH_CONTOURS,
#mp_drawing.DrawingSpec(color=(80,110,10), thickness=1, circle_radius=1),
#mp_drawing.DrawingSpec(color=(80,256,121), thickness=1, circle_radius=1)
#)
# Draw pose connections
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_holistic.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=(80,22,10), thickness=2, circle_radius=2),
mp_drawing.DrawingSpec(color=(80,44,121), thickness=2, circle_radius=1)
)
# Draw left hand connections
mp_drawing.draw_landmarks(image, results.left_hand_landmarks, mp_holistic.HAND_CONNECTIONS,
mp_drawing.DrawingSpec(color=(121,22,76), thickness=2, circle_radius=2),
mp_drawing.DrawingSpec(color=(121,44,250), thickness=2, circle_radius=1)
)
# Draw right hand connections
mp_drawing.draw_landmarks(image, results.right_hand_landmarks, mp_holistic.HAND_CONNECTIONS,
mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=2),
mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=1)
)
def add_image(image,results, action):
#height,width = image.shape
#print(image.shape)
width = image.shape[1]#480
height= image.shape[0]#640
def overlay_transparent(background, overlay, x, y):
# height and width of background image
background_width = background.shape[1]
background_height = background.shape[0]
# if coordinate x and y is larger than background width and height, stop code
if x >= background_width or y >= background_height:
return background
# height and width of overlay image
h, w = overlay.shape[0], overlay.shape[1]
#print('x:',x)
#print('overlay_width:',w)
#print('background_width:',background_width)
#print('y:',y)
#print('overlay_height:',h)
#print('background_height:',background_width)
if w >= background_width:
return background
if h >= background_height:
return background
# if coordinate x + width of overlay is larger than background width and height, stop code
if x + w > background_width:
#w = background_width - x
#overlay = overlay[:, :w]
return background
if x - w < 2:
#w = background_width - x
#overlay = overlay[:, :w]
return background
if y + h > background_height:
#h = background_height - y
#overlay = overlay[:h]
return background
if y - h < 2:
#h = background_height - y
#overlay = overlay[:h]
return background
if overlay.shape[2] < 4:
overlay = np.concatenate(
[
overlay,
np.ones((overlay.shape[0], overlay.shape[1], 1), dtype = overlay.dtype) * 255
],
axis = 2,
)
overlay_image = overlay[..., :3]
mask = overlay[..., 3:] / 255.0
background[y:y+h, x:x+w] = (1.0 - mask) * background[y:y+h, x:x+w] + mask * overlay_image
return background
index = 10
face_keypoint=np.array([[res.x, res.y, res.z] for res in results.face_landmarks.landmark])if results.face_landmarks else np.zeros(468*3)
#print(len(face_keypoint))
#print(action)
if face_keypoint.size != 0 and np.any(face_keypoint[index]) == True:
if action =='Bird':
file_name = './emoji/bird.png'
elif action =='Butterfly':
file_name = './emoji/butterfly.png'
elif action =='Gorilla':
file_name = './emoji/gorilla.png'
elif action == 'Cow':
file_name = './emoji/cow.png'
elif action == 'Elephant':
file_name = './emoji/elephant.png'
elif action == 'Alligator':
file_name = './emoji/alligator.png'
else:
file_name = './emoji/No_sign.png'
if action != 'No Action':
overlay= cv2.imread(file_name, cv2.IMREAD_UNCHANGED)
#overlay= cv2.resize(overlay, (0,0), fx=min(0.1,float(1/face_keypoint[index][2]*-20)), fy=min(0.1,float(1/face_keypoint[index][2]*-20)))
#print('z normalized',face_keypoint[index][2])
#if face_keypoint[index][2]*-100 >1:
#print('close to camera')
#else:
#print('far from camera')
new_z = 0.1/((float(face_keypoint[index][2]*10)-(-1))/(1+1))
#print('new_z',new_z)
#print('z ',face_keypoint[index][2]*-10)
#print('fx:',new_z)
#print('fy:',new_z)
#print(min(0.5,float(new_z)))
overlay= cv2.resize(overlay, (0,0), fx=min(0.5,abs(float(new_z))), fy=min(0.5,abs(float(new_z))))
#print('Normalized',face_keypoint[index])
x = int(float(face_keypoint[index][0])*width)
y = int(float(face_keypoint[index][1])*height)
#print('Actual x',x)
#print('Actual y',y)
#cv2.circle(image,(x,y),3,(255,255,0),thickness= -1)
#overlay = img2.copy()
#image = cv2.rectangle(image, (x,y), (x+overlay.shape[1],y-overlay.shape[0]), (255,0,0), 3)
#image = cv2.addWeighted(image,0.4,overlay,0.1,0)
image = overlay_transparent(image, overlay, x - int(overlay.shape[0]/2), y-overlay.shape[0])
#Setting the paste destination coordinates. For the time being, in the upper left
#x1, y1, x2, y2 = x, y, overlay.shape[1], overlay.shape[0]
#Synthetic!
#image[y1:y2, x1:x2] = overlay[y1:y2, x1:x2]
# define extract keypoint function
def extract_keypoints(results):
pose = np.array([[res.x, res.y, res.z, res.visibility] for res in results.pose_landmarks.landmark]).flatten() if results.pose_landmarks else np.zeros(33*4)
#face = np.array([[res.x, res.y, res.z] for res in results.face_landmarks.landmark]).flatten() if results.face_landmarks else np.zeros(468*3)
lh = np.array([[res.x, res.y, res.z] for res in results.left_hand_landmarks.landmark]).flatten() if results.left_hand_landmarks else np.zeros(21*3)
rh = np.array([[res.x, res.y, res.z] for res in results.right_hand_landmarks.landmark]).flatten() if results.right_hand_landmarks else np.zeros(21*3)
#return np.concatenate([pose, face, lh, rh]) # concatenate all the keypoints that are flattened
return np.concatenate([pose, lh, rh])
def prob_viz(res, actions, input_frame, colors, threshold):
output_frame = input_frame.copy()
#print(res)
multiple = 47
# num = class index , prob = probability of the class
for num, prob in enumerate(res):
#print(num, prob)
if np.argmax(res) == num and res[np.argmax(res)] >= threshold:
#print(res[np.argmax(res)])
(text_width, text_height), baseline = cv2.getTextSize(actions[num]+' '+str(round(prob*100,2))+'% ', cv2.FONT_HERSHEY_SIMPLEX,1, 2)
cv2.rectangle(output_frame, (0,60+num*multiple), (int(prob*text_width), 95+num*multiple), colors[num], -1) #change length of bar depending on probability
cv2.putText(output_frame, actions[num]+' '+str(round(prob*100,2))+'%', (5, 90+num*multiple), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,0), 2, cv2.LINE_AA)
else:
(text_width, text_height), baseline = cv2.getTextSize(actions[num]+' '+str(round(prob*100,2))+'% ', cv2.FONT_HERSHEY_SIMPLEX,1, 2)
cv2.rectangle(output_frame, (0,60+num*multiple), (int(prob*text_width), 95+num*multiple), colors[num], -1) #change length of bar depending on probability
cv2.putText(output_frame, actions[num]+' '+str(round(prob*100,2))+'%', (5, 90+num*multiple), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2, cv2.LINE_AA)
#thres = 0.5
#if prob >= thres:
#cv2.putText(output_frame, actions[num]+' '+str(round(prob*100,2))+'%', (0, 85+num*40), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,0,0), 1, cv2.LINE_AA)
#cv2.putText(image, text, org, font, fontScale, color[, thickness[, lineType[, bottomLeftOrigin]]])
return output_frame
'''
def display_correct_screen(image):
width = image.shape[1]#480
height= image.shape[0]#640
alpha = 0.5
overlay = image.copy()
cv2.rectangle(overlay, (0, 0), (width, height),
(0, 255, 0), -1)
# apply the overlay
cv2.addWeighted(overlay, alpha, image, 1 - alpha,
0, image)
'''
def overlay_transparent(background, overlay, x, y):
# height and width of background image
background_width = background.shape[1]
background_height = background.shape[0]
# if coordinate x and y is larger than background width and height, stop code
if x >= background_width or y >= background_height:
return background
# height and width of overlay image
h, w = overlay.shape[0], overlay.shape[1]
#print('x:',x)
#print('overlay_width:',w)
#print('background_width:',background_width)
#print('y:',y)
#print('overlay_height:',h)
#print('background_height:',background_width)
if w >= background_width:
return background
if h >= background_height:
return background
# if coordinate x + width of overlay is larger than background width and height, stop code
if x + w > background_width:
#w = background_width - x
#overlay = overlay[:, :w]
return background
if x - w < 2:
#w = background_width - x
#overlay = overlay[:, :w]
return background
if y + h > background_height:
#h = background_height - y
#overlay = overlay[:h]
return background
if y - h < 2:
#h = background_height - y
#overlay = overlay[:h]
return background
if overlay.shape[2] < 4:
overlay = np.concatenate(
[
overlay,
np.ones((overlay.shape[0], overlay.shape[1], 1), dtype = overlay.dtype) * 255
],
axis = 2,
)
overlay_image = overlay[..., :3]
mask = overlay[..., 3:] / 255.0
background[y:y+h, x:x+w] = (1.0 - mask) * background[y:y+h, x:x+w] + mask * overlay_image
return background