-
Notifications
You must be signed in to change notification settings - Fork 153
/
Copy pathCNN.py
60 lines (55 loc) · 2.44 KB
/
CNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import tensorflow as tf
class CNN:
''' This function initializes the Convolutional Neural Network (CNN) '''
def __init__(self):
self.model = tf.keras.models.Sequential()
self.modeltrained = False
self.modelbuilt = False
'''This function builds the CNN and compiles it'''
def build_and_compile_model(self):
if self.modelbuilt:
return
# Add a Convolutional layer
self.model.add(tf.keras.layers.Conv2D(32, (3, 3), input_shape=(28, 28, 1), activation='relu'))
# Add a Max pooling layer
self.model.add(tf.keras.layers.MaxPool2D())
# Add the flattened layer
self.model.add(tf.keras.layers.Flatten())
# Add the hidden layer
self.model.add(tf.keras.layers.Dense(512, activation='relu'))
# Adding a dropout layer
self.model.add(tf.keras.layers.Dropout(0.2))
# Add the output layer
self.model.add(tf.keras.layers.Dense(10, activation='softmax'))
# Compiling the model
self.model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
self.modelbuilt = True
'''This function loads the Train/Test dataset, trains the model and evaluates it.
It prints the accuracy attained on the test set in the end'''
def train_and_evaluate_model(self):
if not self.modelbuilt:
raise Exception("Build and train the model first!")
if self.modeltrained:
return
# MNIST object
mnist = tf.keras.datasets.mnist
# Loading the Train/Test data
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
# Reshape to form a 3D Vector
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
# Normalize the train/test dataset
x_train, x_test = x_train / 255.0, x_test / 255.0
# Train the model
self.model.fit(x=x_train, y=y_train, epochs=5)
# Evaluate the model
test_loss, test_acc = self.model.evaluate(x=x_test, y=y_test)
# Print out the model accuracy
print('\nTest accuracy:', test_acc)
self.modeltrained = True
def save_model(self):
if not self.modelbuilt:
raise Exception("Build and compile the model first!")
if not self.modeltrained:
raise Exception("Train and evaluate the model first!")
self.model.save("cnn.hdf5", overwrite=True)