Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fitting error #14

Open
mhady7 opened this issue Nov 24, 2016 · 0 comments
Open

fitting error #14

mhady7 opened this issue Nov 24, 2016 · 0 comments

Comments

@mhady7
Copy link

mhady7 commented Nov 24, 2016

I get "ValueError: Input contains NaN, infinity or a value too large for dtype('float64')" when trying to fit the data . Can you please help?

In [17]: b=np.random.random((300, 7000))

In [18]: b
Out[18]:
array([[ 0.32307771, 0.25185051, 0.65950904, ..., 0.07361776,
0.14508455, 0.95536933],
[ 0.73879883, 0.15227882, 0.73709136, ..., 0.46127292,
0.16149633, 0.55478285],
[ 0.33343231, 0.74376996, 0.17680955, ..., 0.17281043,
0.69592014, 0.11823333],
...,
[ 0.12729313, 0.70065767, 0.16744481, ..., 0.97365921,
0.32745413, 0.82913982],
[ 0.57948363, 0.8199712 , 0.40820909, ..., 0.36342576,
0.67581305, 0.80445348],
[ 0.75098905, 0.56323658, 0.91718958, ..., 0.86885992,
0.81540044, 0.38880498]])

In [19]: a.fit(b)
/share/apps/python/2.7.11/Canopy_64bit/User/lib/python2.7/site-packages/sklearn/utils/validation.py:386: DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and willraise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.
DeprecationWarning)
/share/apps/python/2.7.11/Canopy_64bit/User/lib/python2.7/site-packages/sklearn/utils/validation.py:386: DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and willraise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.
DeprecationWarning)

ValueError Traceback (most recent call last)
in ()
----> 1 a.fit(b)

/scratch/mohamed.ayed/python/lib/python2.7/site-packages/pyxmeans/xmeans.pyc in fit(self, data)
65
66 bic_parent = XMeans.bic([points], [centroid,])
---> 67 bic_child = XMeans.bic([cluster1, cluster2], test_model.centroids)
68 logging.info("\t\tbic_parent = %f, bic_child = %f", bic_parent, bic_child)
69 if bic_child > bic_parent:

/scratch/mohamed.ayed/python/lib/python2.7/site-packages/pyxmeans/xmeans.pyc in bic(cls, clusters, centroids)
97 num_dims = clusters[0][0].shape[0]
98
---> 99 log_likelihood = XMeans._loglikelihood(num_points, num_dims, clusters, centroids)
100 num_params = XMeans._free_params(len(clusters), num_dims)
101

/scratch/mohamed.ayed/python/lib/python2.7/site-packages/pyxmeans/xmeans.pyc in _loglikelihood(cls, num_points, num_dims, clusters, centroids)
115 t1 = fRn * np.log(fRn)
116 t2 = fRn * np.log(num_points)
--> 117 variance = XMeans._cluster_variance(num_points, clusters, centroids) or np.nextafter(0, 1)
118 t3 = ((fRn * num_dims) / 2.0) * np.log((2.0 * np.pi) * variance)
119 t4 = (fRn - 1.0) / 2.0

/scratch/mohamed.ayed/python/lib/python2.7/site-packages/pyxmeans/xmeans.pyc in _cluster_variance(cls, num_points, clusters, centroids)
127 denom = float(num_points - len(centroids))
128 for cluster, centroid in zip(clusters, centroids):
--> 129 distances = euclidean_distances(cluster, centroid)
130 s += (distances*distances).sum()
131 return s / denom

/share/apps/python/2.7.11/Canopy_64bit/User/lib/python2.7/site-packages/sklearn/metrics/pairwise.py in euclidean_distances(X, Y, Y_norm_squared, squared, X_norm_squared)
206 paired_distances : distances betweens pairs of elements of X and Y.
207 """
--> 208 X, Y = check_pairwise_arrays(X, Y)
209
210 if X_norm_squared is not None:

/share/apps/python/2.7.11/Canopy_64bit/User/lib/python2.7/site-packages/sklearn/metrics/pairwise.py in check_pairwise_arrays(X, Y, precomputed)
95 else:
96 X = check_array(X, accept_sparse='csr', dtype=dtype)
---> 97 Y = check_array(Y, accept_sparse='csr', dtype=dtype)
98
99 if precomputed:

/share/apps/python/2.7.11/Canopy_64bit/User/lib/python2.7/site-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
396 % (array.ndim, estimator_name))
397 if force_all_finite:
--> 398 _assert_all_finite(array)
399
400 shape_repr = _shape_repr(array.shape)

/share/apps/python/2.7.11/Canopy_64bit/User/lib/python2.7/site-packages/sklearn/utils/validation.py in _assert_all_finite(X)
52 and not np.isfinite(X).all()):
53 raise ValueError("Input contains NaN, infinity"
---> 54 " or a value too large for %r." % X.dtype)
55
56

ValueError: Input contains NaN, infinity or a value too large for dtype('float64').

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant