forked from GaloisInc/cryptol-specs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAES.cry
281 lines (219 loc) · 9.72 KB
/
AES.cry
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
// Cryptol AES Implementation
// Copyright (c) 2010-2018, Galois Inc.
// www.cryptol.net
// You can freely use this source code for educational purposes.
// This is a fairly close implementation of the FIPS-197 standard:
// http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
// Nk: Number of blocks in the key
// Must be one of 4 (AES128), 6 (AES192), or 8 (AES256)
// Aside from this line, no other code below needs to change for
// implementing AES128, AES192, or AES256
module Primitive::Symmetric::Cipher::Block::AES where
type AES128 = 4
type AES192 = 6
type AES256 = 8
type Nk = AES128
// For Cryptol 2.x | x > 0
// NkValid: `Nk -> Bit
// property NkValid k = (k == `AES128) || (k == `AES192) || (k == `AES256)
// Number of blocks and Number of rounds
type Nb = 4
type Nr = 6 + Nk
type AESKeySize = (Nk*32)
// Helper type definitions
type GF28 = [8]
type State = [4][Nb]GF28
type RoundKey = State
type KeySchedule = (RoundKey, [Nr-1]RoundKey, RoundKey)
// GF28 operations
gf28Add : {n} (fin n) => [n]GF28 -> GF28
gf28Add ps = sums ! 0
where sums = [zero] # [ p ^ s | p <- ps | s <- sums ]
irreducible = <| x^^8 + x^^4 + x^^3 + x + 1 |>
gf28Mult : (GF28, GF28) -> GF28
gf28Mult (x, y) = pmod(pmult x y) irreducible
gf28Pow : (GF28, [8]) -> GF28
gf28Pow (n, k) = pow k
where sq x = gf28Mult (x, x)
odd x = x ! 0
pow i = if i == 0 then 1
else if odd i
then gf28Mult(n, sq (pow (i >> 1)))
else sq (pow (i >> 1))
gf28Inverse : GF28 -> GF28
gf28Inverse x = gf28Pow (x, 254)
gf28DotProduct : {n} (fin n) => ([n]GF28, [n]GF28) -> GF28
gf28DotProduct (xs, ys) = gf28Add [ gf28Mult (x, y) | x <- xs
| y <- ys ]
gf28VectorMult : {n, m} (fin n) => ([n]GF28, [m][n]GF28) -> [m]GF28
gf28VectorMult (v, ms) = [ gf28DotProduct(v, m) | m <- ms ]
gf28MatrixMult : {n, m, k} (fin m) => ([n][m]GF28, [m][k]GF28) -> [n][k]GF28
gf28MatrixMult (xss, yss) = [ gf28VectorMult(xs, yss') | xs <- xss ]
where yss' = transpose yss
// The affine transform and its inverse
xformByte : GF28 -> GF28
xformByte b = gf28Add [b, (b >>> 4), (b >>> 5), (b >>> 6), (b >>> 7), c]
where c = 0x63
xformByte' : GF28 -> GF28
xformByte' b = gf28Add [(b >>> 2), (b >>> 5), (b >>> 7), d] where d = 0x05
// The SubBytes transform and its inverse
SubByte : GF28 -> GF28
SubByte b = xformByte (gf28Inverse b)
SubByte' : GF28 -> GF28
SubByte' b = sbox@b
SubBytes : State -> State
SubBytes state = [ [ SubByte' b | b <- row ] | row <- state ]
InvSubByte : GF28 -> GF28
InvSubByte b = gf28Inverse (xformByte' b)
InvSubBytes : State -> State
InvSubBytes state = [ [ InvSubByte b | b <- row ] | row <- state ]
// The ShiftRows transform and its inverse
ShiftRows : State -> State
ShiftRows state = [ row <<< shiftAmount | row <- state
| shiftAmount <- [0 .. 3]
]
InvShiftRows : State -> State
InvShiftRows state = [ row >>> shiftAmount | row <- state
| shiftAmount <- [0 .. 3]
]
// The MixColumns transform and its inverse
MixColumns : State -> State
MixColumns state = gf28MatrixMult (m, state)
where m = [[2, 3, 1, 1],
[1, 2, 3, 1],
[1, 1, 2, 3],
[3, 1, 1, 2]]
InvMixColumns : State -> State
InvMixColumns state = gf28MatrixMult (m, state)
where m = [[0x0e, 0x0b, 0x0d, 0x09],
[0x09, 0x0e, 0x0b, 0x0d],
[0x0d, 0x09, 0x0e, 0x0b],
[0x0b, 0x0d, 0x09, 0x0e]]
// The AddRoundKey transform
AddRoundKey : (RoundKey, State) -> State
AddRoundKey (rk, s) = rk ^ s
// Key expansion
Rcon : [8] -> [4]GF28
Rcon i = [(gf28Pow (<| x |>, i-1)), 0, 0, 0]
SubWord : [4]GF28 -> [4]GF28
SubWord bs = [ SubByte' b | b <- bs ]
RotWord : [4]GF28 -> [4]GF28
RotWord [a0, a1, a2, a3] = [a1, a2, a3, a0]
NextWord : ([8],[4][8],[4][8]) -> [4][8]
NextWord(i, prev, old) = old ^ mask
where mask = if i % `Nk == 0
then SubWord(RotWord(prev)) ^ Rcon (i / `Nk)
else if (`Nk > 6) /\ (i % `Nk == 4)
then SubWord(prev)
else prev
ExpandKeyForever : [Nk][4][8] -> [inf]RoundKey
ExpandKeyForever seed = [ transpose g | g <- groupBy`{4} (keyWS seed) ]
keyWS : [Nk][4][8] -> [inf][4][8]
keyWS seed = xs
where xs = seed # [ NextWord(i, prev, old)
| i <- [ `Nk ... ]
| prev <- drop`{Nk-1} xs
| old <- xs
]
ExpandKey : [AESKeySize] -> KeySchedule
ExpandKey key = (keys @ 0, keys @@ [1 .. (Nr - 1)], keys @ `Nr)
where seed : [Nk][4][8]
seed = split (split key)
keys = ExpandKeyForever seed
fromKS : KeySchedule -> [Nr+1][4][32]
fromKS (f, ms, l) = [ formKeyWords (transpose k) | k <- [f] # ms # [l] ]
where formKeyWords bbs = [ join bs | bs <- bbs ]
// AES rounds and inverses
AESRound : (RoundKey, State) -> State
AESRound (rk, s) = AddRoundKey (rk, MixColumns (ShiftRows (SubBytes s)))
AESFinalRound : (RoundKey, State) -> State
AESFinalRound (rk, s) = AddRoundKey (rk, ShiftRows (SubBytes s))
AESInvRound : (RoundKey, State) -> State
AESInvRound (rk, s) =
InvMixColumns (AddRoundKey (rk, InvSubBytes (InvShiftRows s)))
AESFinalInvRound : (RoundKey, State) -> State
AESFinalInvRound (rk, s) = AddRoundKey (rk, InvSubBytes (InvShiftRows s))
// Converting a 128 bit message to a State and back
msgToState : [128] -> State
msgToState msg = transpose (split (split msg))
stateToMsg : State -> [128]
stateToMsg st = join (join (transpose st))
// AES Encryption
aesEncrypt : ([128], [AESKeySize]) -> [128]
aesEncrypt (pt, key) = stateToMsg (AESFinalRound (kFinal, rounds ! 0))
where (kInit, ks, kFinal) = ExpandKey key
state0 = AddRoundKey(kInit, msgToState pt)
rounds = [state0] # [ AESRound (rk, s) | rk <- ks
| s <- rounds
]
// AES Decryption
aesDecrypt : ([128], [AESKeySize]) -> [128]
aesDecrypt (ct, key) = stateToMsg (AESFinalInvRound (kFinal, rounds ! 0))
where (kFinal, ks, kInit) = ExpandKey key
state0 = AddRoundKey(kInit, msgToState ct)
rounds = [state0] # [ AESInvRound (rk, s)
| rk <- reverse ks
| s <- rounds
]
sbox : [256]GF28
sbox = [
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67,
0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59,
0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7,
0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1,
0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05,
0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83,
0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29,
0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa,
0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c,
0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc,
0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19,
0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee,
0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49,
0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4,
0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6,
0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70,
0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9,
0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e,
0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1,
0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0,
0x54, 0xbb, 0x16]
// Test runs:
// cryptol> aesEncrypt (0x3243f6a8885a308d313198a2e0370734, \
// 0x2b7e151628aed2a6abf7158809cf4f3c)
// 0x3925841d02dc09fbdc118597196a0b32
// cryptol> aesEncrypt (0x00112233445566778899aabbccddeeff, \
// 0x000102030405060708090a0b0c0d0e0f)
// 0x69c4e0d86a7b0430d8cdb78070b4c55a
property AESCorrect msg key = aesDecrypt (aesEncrypt (msg, key), key) == msg
testmsgs = [0x6bc1bee22e409f96e93d7e117393172a
,0xae2d8a571e03ac9c9eb76fac45af8e51
,0x30c81c46a35ce411e5fbc1191a0a52ef
,0xf69f2445df4f9b17ad2b417be66c3710]
// AES128 tests
testkey128 = 0x2b7e151628aed2a6abf7158809cf4f3c
testct128 = [0x3ad77bb40d7a3660a89ecaf32466ef97
,0xf5d3d58503b9699de785895a96fdbaaf
,0x43b1cd7f598ece23881b00e3ed030688
,0x7b0c785e27e8ad3f8223207104725dd4]
property testsPass = and [ aesEncrypt (msg, testkey128) == ct
| msg <- testmsgs | ct <- testct128 ]
// AES192 tests
// testkey192 = 0x8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b
// testct192 = [0xbd334f1d6e45f25ff712a214571fa5cc
// ,0x974104846d0ad3ad7734ecb3ecee4eef
// ,0xef7afd2270e2e60adce0ba2face6444e
// ,0x9a4b41ba738d6c72fb16691603c18e0e]
// property testsPass = and [ aesEncrypt (msg, testkey192) == ct
// | msg <- testmsgs | ct <- testct192 ]
// AES256 tests
// testkey256 = 0x603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4
// testct256 = [0xf3eed1bdb5d2a03c064b5a7e3db181f8
// ,0x591ccb10d410ed26dc5ba74a31362870
// ,0xb6ed21b99ca6f4f9f153e7b1beafed1d
// ,0x23304b7a39f9f3ff067d8d8f9e24ecc7]
// property testsPass = and [ aesEncrypt (msg, testkey256) == ct
// | msg <- testmsgs | ct <- testct256 ]