-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmulti38.py
executable file
·370 lines (275 loc) · 10.2 KB
/
multi38.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import os
from pathlib import Path
import numpy as np
import pandas as pd
import csv
import torch
from torch.utils.data import Dataset
import hydra
from omegaconf import DictConfig
from malpolon.models.utils import check_loss, check_model, check_optimizer
import pytorch_lightning as pl
import torchmetrics.functional as Fmetrics
from pytorch_lightning.callbacks import ModelCheckpoint
from torchvision import transforms
from malpolon.data.data_module import BaseDataModule
from malpolon.models import GenericPredictionSystem
from malpolon.logging import Summary
from transforms import RGBDataTransform
class Multi38Dataset(Dataset):
"""Pytorch dataset handler for a subset of GeoLifeCLEF 2022 dataset.
It consists in a restriction to France and to the 100 most present plant species.
Parameters
----------
root : string or pathlib.Path
Root directory of dataset.
subset : string, either "train", "val", "train+val" or "test"
Use the given subset ("train+val" is the complete training data).
transform : callable (optional)
A function/transform that takes a list of arrays and returns a transformed version.
target_transform : callable (optional)
A function/transform that takes in the target and transforms it.
"""
def __init__(
self,
root,
dataset_name,
subset,
transform=None,
target_transform=None,
ignore_indices=[],
):
root = Path(root)
self.root = root
self.subset = subset
self.transform = transform
self.target_transform = target_transform
self.ignore_indices = ignore_indices
self.dataset_name = dataset_name
df = pd.read_csv(
root / dataset_name,
index_col="id",
)
file = (self.root / 'species.csv').open()
species = list(csv.DictReader(file))
self.species_index = {x['id']:int(x['index']) for x in species}
if subset != "train+val":
ind = df.index[df["subset"] == subset]
else:
ind = df.index[np.isin(df["subset"], ["train", "val"])]
df = df.loc[ind]
self.observation_ids = df.index
self.targets = df["species"].values
def __len__(self):
"""Returns the number of observations in the dataset."""
return len(self.observation_ids)
def __getitem__(self, index):
observation_id = self.observation_ids[index]
species = self.targets[index]
patches = self.load_patch(observation_id, self.root / 'npy-norm' / (species + '-norm-npy'))
if self.transform:
patches = self.transform(patches)
assert not(torch.isnan(patches).any())
species_target = self.targets[index]
zeros = [0]*38
if species_target in self.species_index:
zeros[self.species_index[species_target]] = 1
target = torch.tensor(zeros).float()
if self.target_transform:
target = self.target_transform(target)
return patches, target
def load_patch(self, observation_id, patches_path):
"""Loads the patch data associated to an observation id.
Parameters
----------
observation_id : integer / string
Identifier of the observation.
patches_path : string / pathlib.Path
Path to the folder containing all the patches.
Returns
-------
patches : dict containing 2d array-like objects
Returns a dict containing the requested patches.
"""
filename = Path(patches_path) / str(observation_id)
patches = {}
patch25_filename = filename.with_name(filename.stem + ".npy")
patch25 = np.load(patch25_filename)
for i in self.ignore_indices:
patch25[...,i] = 0
# # Uncomment for DNN training
# center_values = 0.25 * (patch25[15,15,:] + patch25[15,16,:] + patch25[16,15,:] + patch25[16,16,:])
# patch25[:,:] = center_values
# # End of DNN Training
# # Test with summary values
# av, std = np.average(patch25, (0,1)), np.std(patch25, (0,1))
# mi, ma = np.min(patch25, (0,1)), np.max(patch25, (0,1))
# patch25 = np.zeros_like(patch25)
# patch25[0,0] = av
# patch25[0,1] = std
# patch25[0,2] = mi
# patch25[0,3] = ma
# # End of test code
if(np.isnan(patch25).any()):
print(patch25_filename, patch25.shape,np.isnan(patch25).sum())
patches["25"] = patch25
return patches
class Multi38DataModule(BaseDataModule):
r"""
Data module for MicroGeoLifeCLEF 2022.
Parameters
----------
dataset_path: Path to dataset
train_batch_size: Size of batch for training
inference_batch_size: Size of batch for inference (validation, testing, prediction)
num_workers: Number of workers to use for data loading
"""
def __init__(
self,
dataset_path: str,
dataset_name: str = None,
train_batch_size: int = 32,
inference_batch_size: int = 256,
num_workers: int = 8,
ignore_indices: list = [],
pin_memory: bool = True,
):
super().__init__(pin_memory, train_batch_size, inference_batch_size, num_workers)
self.dataset_path = dataset_path
self.ignore_indices = ignore_indices
self.dataset_name = dataset_name
@property
def train_transform(self):
return transforms.Compose(
[
lambda data: RGBDataTransform()(data["25"])
]
)
@property
def test_transform(self):
return transforms.Compose(
[
lambda data: RGBDataTransform()(data["25"])
]
)
def get_dataset(self, split, transform, **kwargs):
dataset = Multi38Dataset(
self.dataset_path,
dataset_name=self.dataset_name,
subset=split,
transform=transform,
target_transform= None,
ignore_indices=self.ignore_indices,
**kwargs
)
return dataset
class Multi38ClassificationSystem(GenericPredictionSystem):
r"""
Basic finetuning classification system.
Parameters
----------
model: model to use
lr: learning rate
weight_decay: weight decay value
momentum: value of momentum
nesterov: if True, uses Nesterov's momentum
metrics: dictionnary containing the metrics to compute
binary: if True, uses binary classification loss instead of multi-class one
"""
def __init__(
self,
model,
lr: float = 1e-2,
weight_decay: float = 0,
momentum: float = 0.9,
nesterov: bool = True,
metrics = None,
weight: torch.Tensor = None,
):
self.lr = lr
self.weight_decay = weight_decay
self.momentum = momentum
self.nesterov = nesterov
model = check_model(model)
optimizer = torch.optim.SGD(
model.parameters(),
lr=self.lr,
weight_decay=self.weight_decay,
momentum=self.momentum,
nesterov=self.nesterov,
)
loss = torch.nn.BCELoss(weight=weight)
#loss = torch.nn.BCELoss()
super().__init__(model, loss, optimizer, metrics)
class ClassificationSystem(Multi38ClassificationSystem):
def __init__(
self,
model: dict,
lr: float,
weight_decay: float,
momentum: float,
nesterov: bool,
loss_weights: list,
):
metrics = {
"acc": Fmetrics.classification.binary_accuracy,
"f1": Fmetrics.classification.binary_f1_score,
#"cm": Fmetrics.classification.binary_confusion_matrix,
"jac": Fmetrics.classification.binary_jaccard_index,
}
super().__init__(
model,
lr,
weight_decay,
momentum,
nesterov,
metrics,
weight = torch.Tensor(loss_weights),
)
@hydra.main(version_base="1.1", config_path="conf", config_name="multi38_config")
def main(cfg: DictConfig) -> None:
torch.set_num_threads(32)
run_path = Path.cwd()
logger = pl.loggers.TensorBoardLogger(save_dir=run_path.parent, name='', version = run_path.stem,
sub_dir='logs', default_hp_metric = False)
logger.log_hyperparams(cfg)
datamodule = Multi38DataModule(**cfg.data)
if cfg.other.train_from_checkpoint:
ckpt_path = cfg.other.ckpt_path + cfg.other.ckpt_name
model = ClassificationSystem.load_from_checkpoint(ckpt_path, model=cfg.model, **cfg.optimizer)
else:
model = ClassificationSystem(cfg.model, **cfg.optimizer)
callbacks = [
Summary(),
ModelCheckpoint(
dirpath=os.getcwd(),
filename="checkpoint-{epoch:02d}--{val_f1:.4f}",
monitor="val_f1",
mode="max",
),
]
trainer = pl.Trainer(logger=logger, callbacks=callbacks, **cfg.trainer)
trainer.fit(model, datamodule=datamodule)
trainer.validate(model, datamodule=datamodule)
def predict(cfg: DictConfig) -> list:
datamodule = Multi38DataModule(**cfg.data)
model = ClassificationSystem(cfg.model, **cfg.optimizer)
trainer = pl.Trainer(**cfg.trainer)
ckpt_path = cfg.other.ckpt_path + cfg.other.ckpt_name
predictions = trainer.predict(model, datamodule=datamodule, ckpt_path=ckpt_path)
return(torch.cat(predictions).numpy())
def test(cfg: DictConfig) -> list:
datamodule = Multi38DataModule(**cfg.data)
model = ClassificationSystem(cfg.model, **cfg.optimizer)
trainer = pl.Trainer(**cfg.trainer)
ckpt_path = cfg.other.ckpt_path + cfg.other.ckpt_name
trainer.test(model, datamodule=datamodule, ckpt_path=ckpt_path)
def last_checkpoint() -> str:
cur_path = os.getcwd()
os.chdir('/home/gaetan/multi38/outputs/multi38')
avail = [str(p) for p in Path('.').glob('*/*.ckpt')]
avail.sort()
os.chdir(cur_path)
return(avail[-1])
if __name__ == "__main__":
main()