-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathed25519ietf.py
133 lines (113 loc) · 3.85 KB
/
ed25519ietf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#https://tools.ietf.org/html/draft-josefsson-eddsa-ed25519-00#section-4
#Copyright (c) <YEAR>, <OWNER>
#All rights reserved.
#
#Redistribution and use in source and binary forms, with or without
#modification, are permitted provided that the following conditions are met:
#
#1. Redistributions of source code must retain the above copyright notice, this
#list of conditions and the following disclaimer.
#2. Redistributions in binary form must reproduce the above copyright notice,
#this list of conditions and the following disclaimer in the documentation
#and/or other materials provided with the distribution.
#
#THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
#ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
#WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
#DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
#ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
#(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
#LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
#ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
#(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
#SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#The views and conclusions contained in the software and documentation are those
#of the authors and should not be interpreted as representing official policies,
#either expressed or implied, of the FreeBSD Project.
import hashlib
import MiniNero
def sha512(s):
return hashlib.sha512(s).digest()
# Base field Z_p
p = 2**255 - 19
def modp_inv(x):
return pow(x, p-2, p)
# Curve constant
d = -121665 * modp_inv(121666) % p
# Group order
q = 2**252 + 27742317777372353535851937790883648493
def sha512_modq(s):
return int.from_bytes(sha512(s), "little") % q
# Points are represented as tuples (X, Y, Z, T) of extended coordinates,
# with x = X/Z, y = Y/Z, x*y = T/Z
def point_add(P, Q):
A = (P[1]-P[0])*(Q[1]-Q[0]) % p
B = (P[1]+P[0])*(Q[1]+Q[0]) % p
C = 2 * P[3] * Q[3] * d % p
D = 2 * P[2] * Q[2] % p
E = B-A
F = D-C
G = D+C
H = B+A
return (E*F, G*H, F*G, E*H)
# Computes Q = s * Q
def point_mul(s, P):
Q = (0, 1, 1, 0) # Neutral element
while s > 0:
# Is there any bit-set predicate?
if s & 1:
Q = point_add(Q, P)
P = point_add(P, P)
s >>= 1
return Q
def point_equal(P, Q):
# x1 / z1 == x2 / z2 <==> x1 * z2 == x2 * z1
if (P[0] * Q[2] - Q[0] * P[2]) % p != 0:
return False
if (P[1] * Q[2] - Q[1] * P[2]) % p != 0:
return False
return True
# Square root of -1
modp_sqrt_m1 = pow(2, (p-1) // 4, p)
# Compute corresponding x coordinate, with low bit corresponding to sign,
# or return None on failure
def recover_x(y, sign):
x2 = (y*y-1) * modp_inv(d*y*y+1)
if x2 == 0:
if sign:
return None
else:
return 0
# Compute square root of x2
x = pow(x2, (p+3) // 8, p)
if (x*x - x2) % p != 0:
x = x * modp_sqrt_m1 % p
if (x*x - x2) % p != 0:
return None
if (x & 1) != sign:
x = p - x
return x
# Base point
g_y = 4 * modp_inv(5) % p
g_x = recover_x(g_y, 0)
G = (g_x, g_y, 1, g_x * g_y % p)
def basepoint():
return G
def point_compress(P):
zinv = modp_inv(P[2])
x = P[0] * zinv % p
y = P[1] * zinv % p
return MiniNero.intToHex(y | ((x & 1) << 255) )
def point_decompress(s):
#if len(s) != 32:
#raise Exception("Invalid input length for decompression")
#y = int.from_bytes(s, "little")
y = MiniNero.hexToInt(s)
sign = y >> 255
y &= (1 << 255) - 1
x = recover_x(y, sign)
if x is None:
return None
else:
return (x, y, 1, x*y % p)