-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstep3_crosslingual_translator.py
101 lines (89 loc) · 3.72 KB
/
step3_crosslingual_translator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import re
from normalizer import normalize # pip install git+https://github.com/csebuetnlp/normalizer
import bangla
def tag_arabic_text(text,ar_pattern=u'[\u0600-\u06FF]+',english_only = False):
# remove multiple spaces
data=re.sub(' +', ' ',text)
texts=[]
if "।" in data:punct="।"
elif "." in data:punct="."
else:punct="\n"
for text in data.split(punct):
# create start and end
text="start"+text+"end"
# tag text
parts=re.split(ar_pattern, text)
parts=[p for p in parts if p.strip()]
parts=set(parts)
for m in parts:
if len(m.strip())>1:text=text.replace(m,f"</ar>{m}<ar>")
# clean-up invalid combos
text=text.replace("</ar>start",'')
text=text.replace("end<ar>",'')
texts.append(text)
text=f"{punct}".join(texts)
if(english_only):
#https://stackoverflow.com/questions/55656429/replace-or-remove-html-tag-content-python-regex
return re.sub(r'(?s)<ar>.*?</ar>', '', text)
return text
torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(torch_device)
model = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/banglat5_nmt_en_bn").to(torch_device)
tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/banglat5_nmt_en_bn",use_fast=True)
def translate_en_bn(input_sentence):
input_ids = tokenizer(normalize(input_sentence), return_tensors="pt").input_ids
input_ids = input_ids.to(torch_device)
generated_tokens = model.generate(input_ids)
decoded_tokens = tokenizer.batch_decode(generated_tokens)[0]
decoded_tokens=decoded_tokens.replace("<pad>","").replace("</s>","")
sen=decoded_tokens.split()
words=[w for w in sen if w.strip()]
sen=" ".join(words)
return decoded_tokens
def EN_AR_to_BN_AR_Translator(en_text,tag_text = False):
'''
translates multilingual english-arabic code mixed text into
multilingual bengali-arabic code mixed text
'''
if(tag_text):
en_text = tag_arabic_text(en_text,english_only=False)
sentenceEnders = re.compile('[.!?]')
sentences = sentenceEnders.split(en_text)
main_list = []
for i in range(len(sentences)):
list_str = sentences[i].split('<ar>')
if(len(list_str) == 1):
main_list.append(list_str[0])
else:
for j in range(len(list_str)):
if('</ar>' in list_str[j]):
list_str1 = list_str[j].split('</ar>')
main_list.append("<ar>"+list_str1[0]+"</ar>")
main_list.append(list_str1[1])
else:
main_list.append(list_str[j])
while(" " in main_list):
main_list.remove(" ")
for idx in range(len(main_list)):
if('<ar>' not in main_list[idx] or '</ar>' not in main_list[idx]):
output_sentence = []
for word in main_list[idx].split():
output_sentence.append(word)
main_list[idx] = ' '.join(output_sentence)
#numerizer
main_list[idx] = bangla.convert_english_digit_to_bangla_digit(main_list[idx])
# multilingual english-arabic to multilingual bengali-arabic
try:
if len(main_list[idx])>1:
main_list[idx]=translate_en_bn(main_list[idx])
except:
print("failed -> ",main_list[idx])
bn_mlt = " ".join(main_list)
bn_mlt = re.sub(' ্ ','',bn_mlt)
bn_mlt = re.sub("\\'","",bn_mlt)#replace \'
bn_mlt = re.sub('<unk>','',bn_mlt)
# bn_mlt=bn_mlt.replace("<ar>",'')
# bn_mlt=bn_mlt.replace("</ar>",'')
return bn_mlt