-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcount.py
203 lines (124 loc) · 4.12 KB
/
count.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from morph.centroidtracker import CentroidTracker
from morph.trackableobject import TrackableObject
from imutils.video import VideoStream
from imutils.video import FPS
import numpy as np
import argparse
import imutils
import time
import dlib
import cv2
import matplotlib.pyplot as plt
def infographics(time1,time2,name,frames_amount,objects_per_frame):
list_of_frames = [i for i in range(0,frames_amount,20)]
if len(list_of_frames)>len(objects_per_frame):
list_of_frames[:-1]
elif len(list_of_frames)<len(objects_per_frame):
list_of_frames.append(list_of_frames[-1]+20)
plt.plot(list_of_frames,objects_per_frame)
plt.ylabel('Amount of objects')
plt.xlabel('Number of frames')
plt.title(time1+' - '+time2)
plt.savefig(name.split('.')[0]+'.png')
plt.show()
ap = argparse.ArgumentParser()
ap.add_argument("-t", "--type", type=str,
help="type of object to recognize")
ap.add_argument("-o", "--output", type=str,
help="path to optional output video file")
args = vars(ap.parse_args())
tm1 = time.ctime(time.time())
objects_per_frame = []
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"]
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe('MobileNetSSD_deploy.prototxt', 'MobileNetSSD_deploy.caffemodel')
vs = VideoStream(src='http://192.168.11.1:8080/snapshot?topic=/main_camera/image_raw').start()
writer = None
W = None
H = None
ct = CentroidTracker(maxDisappeared=40, maxDistance=50)
trackers = []
trackableObjects = {}
totalFrames = 0
total=0
fps = FPS().start()
while True:
frame = vs.read()
frame = imutils.resize(frame, width=500)
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if W is None or H is None:
(H, W) = frame.shape[:2]
if args["output"] is not None and writer is None:
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
writer = cv2.VideoWriter(args["output"], fourcc, 30,(W, H), True)
status = "Waiting"
rects = []
if totalFrames % 20 == 0: #detect every 20 frames
objects_per_frame.append(0)
status = "Detecting"
trackers = []
blob = cv2.dnn.blobFromImage(frame, 0.007843, (W, H), 127.5)
net.setInput(blob)
detections = net.forward()
for i in np.arange(0, detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > 0.4:
idx = int(detections[0, 0, i, 1])
if CLASSES[idx]!=args['type']:
continue
objects_per_frame[-1]+=1
box = detections[0, 0, i, 3:7] * np.array([W, H, W, H])
(startX, startY, endX, endY) = box.astype("int")
tracker = dlib.correlation_tracker()
rect = dlib.rectangle(startX, startY, endX, endY)
tracker.start_track(rgb, rect)
trackers.append(tracker)
else:
for tracker in trackers:
status = "Tracking"
tracker.update(rgb)
pos = tracker.get_position()
startX = int(pos.left())
startY = int(pos.top())
endX = int(pos.right())
endY = int(pos.bottom())
rects.append((startX, startY, endX, endY))
objects = ct.update(rects)
for (objectID, centroid) in objects.items():
to = trackableObjects.get(objectID, None)
if to is None:
to = TrackableObject(objectID, centroid)
else:
y = [c[1] for c in to.centroids]
direction = centroid[1] - np.mean(y)
to.centroids.append(centroid)
if not to.counted:
total += 1
to.counted = True
trackableObjects[objectID] = to
text = "ID {}".format(objectID)
cv2.putText(frame, text, (centroid[0] - 10, centroid[1] - 10),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
cv2.circle(frame, (centroid[0], centroid[1]), 4, (255, 255, 255), -1)
info = [
('Total',total),
]
for (i, (k, v)) in enumerate(info):
text = "{}: {}".format(k, v)
if writer is not None:
writer.write(frame)
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
if key == ord("q"):
break
totalFrames += 1
fps.update()
fps.stop()
if writer is not None:
writer.release()
vs.stop()
cv2.destroyAllWindows()
tm2 = time.ctime(time.time())
infographics(tm1,tm2,args['output'],totalFrames,objects_per_frame)