-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPlasticGeoDistance.ts
345 lines (317 loc) · 12.6 KB
/
PlasticGeoDistance.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
export default class PlasticGeoDistance {
radius: number;
_bounds: Ibounds;
_units: string;
_earthRadius: number;
/**
* construct new instance
* @param {units} - miles, kilometers, m, k. Uses first letter. Default Miles.
*/
constructor(units: string) {
this._units = units ? (units.toUpperCase().substring(0, 1) === "K" ? "K" : "M") : "M";
this._earthRadius = this._units === "K" ? 6371 : 3958.756;
}
/**
* Calculate bounding rectangle for a distance from a point.
* If not given, the instance radius and pointA are used.
*
* Credit for this technique: Jan Matuschek http://JanMatuschek.de/LatitudeLongitudeBoundingCoordinates
*
* @param {distance} - radius in the instance units (miles, kilometers)
* @param {point} - center point lat/lng in degrees
*/
bounds(distance: number, point: Ilatlng): Ibounds {
let pA = this.geoToRadians(point);
let dist = distance;
if (isNaN(dist) || dist <= 0) {
return {
minLat: pA.lat,
minLng: pA.lng,
maxLat: pA.lat,
maxLng: pA.lng
};
}
// constants
const EARTH_RADIUS = this._earthRadius;
const MIN_LAT = this.toRadians(-90);
const MAX_LAT = this.toRadians(90);
const MIN_LON = this.toRadians(-180);
const MAX_LON = this.toRadians(180);
// calculate latitude bounds
let radDist = dist / EARTH_RADIUS;
let minLat = pA.lat - radDist;
let maxLat = pA.lat + radDist;
// calculate delta of longitude
let deltaLng = Math.asin(Math.sin(radDist) / Math.cos(pA.lat));
let minLon: number = 0;
let maxLon: number = 0;
// if the bounds do not cover one of the poles
if (minLat > MIN_LAT && maxLat < MAX_LAT) {
minLon = pA.lng - deltaLng;
maxLon = pA.lng + deltaLng;
if (minLon < MIN_LON) {
minLon = minLon + 2 * Math.PI;
}
if (maxLon > MAX_LON) {
maxLon = maxLon - 2 * Math.PI;
}
}
// else a pole is within the given distance
else {
minLat = Math.max(minLat, MIN_LAT);
maxLat = Math.min(maxLat, MAX_LAT);
minLon = MIN_LON;
maxLon = MAX_LON;
}
return {
minLng: this.toDegrees(minLon),
maxLng: this.toDegrees(maxLon),
minLat: this.toDegrees(minLat),
maxLat: this.toDegrees(maxLat)
};
}
/**
* Calculate the distance between the two points
* if one or both points are not given, the instance points A and B are used.
* Uses the Haversine formula - credit: http://www.movable-type.co.uk/scripts/latlong.html
* @param {point1} - first point lat/lng in degrees
* @param {point2} - second point lat/lng in degrees
* @return distance in instance units
*/
distance(point1: Ilatlng, point2: Ilatlng): number {
const R = this._earthRadius;
// set up parameter values, if given
let pA = this.geoToRadians(point1);
let pB = this.geoToRadians(point2);
let c = this.radianDistance(pA, pB);
let d = R * c;
return (isNaN(d) ? 0 : d);
}
/**
* radianDistance - calculates the distance in radians between two
* points that are expressed in radians
*/
radianDistance(pA: Ilatlng, pB: Ilatlng): number {
// Haversine credit: http://www.movable-type.co.uk/scripts/latlong.html
let dLat = (pB.lat - pA.lat);
let dLon = (pB.lng - pA.lng);
let a = Math.sin(dLat / 2) * Math.sin(dLat / 2) +
Math.cos(pA.lat) * Math.cos(pB.lat) *
Math.sin(dLon / 2) * Math.sin(dLon / 2);
return 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
}
/**
* Convert a degrees point to a radians point
*/
geoToRadians(geo: Ilatlng): Ilatlng {
return { lat: this.toRadians(geo.lat), lng: this.toRadians(geo.lng) };
}
/**
* geoToDegrees - convert a radians point to degrees
*/
public geoToDegrees(geoR: Ilatlng): Ilatlng {
return { lat: this.toDegrees(geoR.lat), lng: this.toDegrees(geoR.lng) };
}
/**
* get a bounds checking function
*/
getBoundsCheckFunction(distance: number, point: Ilatlng): IboundsFn {
let m: Ibounds = this.bounds(distance, point);
return (latlng: Ilatlng) => { return this.isInBounds(latlng, m); } ;
}
/**
* is inside bounding rectangle
*/
isInBounds(point: Ilatlng, bounds: Ibounds): boolean {
return (point.lat >= bounds.minLat && point.lat <= bounds.maxLat) &&
(bounds.minLng > bounds.maxLng ? (point.lng >= bounds.minLng || point.lng <= bounds.maxLng) :
(point.lng >= bounds.minLng && point.lng <= bounds.maxLng));
}
/**
* Convert degrees to radians
*/
toRadians(degrees: number): number {
return degrees * Math.PI / 180;
}
/**
* Convert radians to degrees
*/
toDegrees(rad: number): number {
return rad * 180 / Math.PI;
}
/**
* computeMidpoint - Finds the geographic center of an array of latlng
*/
computeMidpoint(points: Array<Ilatlng>): Ilatlng {
let m = this._computeAverageCoordinates(this._toCenteringArray(points));
return this.geoToDegrees(m);
}
public distanceToPointList(fromPoint: Ilatlng, toPoints: Array<Ilatlng>) {
let fp = this.geoToRadians(fromPoint);
let pCA = this._toCenteringArray(toPoints);
let result: IdistanceCenterResult = {
point: fromPoint,
avgDist: 0,
totalDist: this._sumRadianDistance({ lat: fp.lat, lng: fp.lng, x: 0, y: 0, z: 0 }, pCA)
};
result.point = this.geoToDegrees(result.point);
result.totalDist = result.totalDist * this._earthRadius;
result.avgDist = result.totalDist / toPoints.length;
return result;
}
/**
* computeMinimumDistancePoint - Finds the point with the minimum total
* distance to all points in an array of lat/lng.
*
* Adapted from http://www.geomidpoint.com/calculation.html - B. Center of minimum distance
*/
public computeMinimumDistancePoint(points: Array<Ilatlng>): IdistanceCenterResult {
let result: IdistanceCenterResult = { point: { lat: 0, lng: 0 }, avgDist: 0, totalDist: 0 };
if (!points || points.length == 0) {
return result;
}
if (points.length == 1) {
result.point.lat = points[0].lat;
result.point.lng = points[0].lng;
return result;
}
let pCA = this._toCenteringArray(points);
let midPt = this._computeAverageCoordinates(pCA);
let currentBest: IdistanceCenterResult = { point: midPt, avgDist: 0, totalDist: this._sumRadianDistance(midPt, pCA) };
// test all points in the array itself as a new possible center
currentBest = this._testCandidateCenterPoints(pCA, pCA, currentBest);
// form a decreasing size circle of 8 points around the current best
// point and test each as a possible new best point. 16 iterations is
// enough to ensure accuracy down to 0.1 miles so this function uses 17
// iterations
let testRadius = Math.PI / 2;
for (let r = 0; r < 17; r++) {
let cbd = 200000 + currentBest.totalDist;
while (currentBest.totalDist < cbd) {
let candidatePts: Array<Ilatlngxyz> = [];
for (let i = 0; i < 8; i++) {
let dp = this._destinationPointRadians(currentBest.point, Math.PI / 4 * i, testRadius);
candidatePts.push({ lat: dp.lat, lng: dp.lng, x: 0, y: 0, z: 0 });
}
cbd = currentBest.totalDist;
currentBest = this._testCandidateCenterPoints(candidatePts, pCA, currentBest);
}
testRadius = testRadius / 2;
}
// convert to degrees and return
result.point = this.geoToDegrees(currentBest.point);
result.totalDist = currentBest.totalDist * this._earthRadius;
result.avgDist = result.totalDist / points.length;
return result;
}
/**
* toCenteringArray - Converts an array of latlng in degrees
* to an array of latlng in radians plus the x, y, z cartesian coordinates
*
* Adapted from http://www.geomidpoint.com/calculation.html - A. Geographic midpoint
*/
private _toCenteringArray(sourceArray: Array<Ilatlng>): Array<Ilatlngxyz> {
let result: Array<Ilatlngxyz> = [];
for (let p of sourceArray) {
let latr = this.toRadians(p.lat);
let lngr = this.toRadians(p.lng);
result.push({
lat: latr,
lng: lngr,
x: Math.cos(latr) * Math.cos(lngr),
y: Math.cos(latr) * Math.sin(lngr),
z: Math.sin(latr)
});
}
return result;
}
/**
* computeAverageCoordinates - computes the average x, y, and z of an array of cartesian points
*
* Adapted from http://www.geomidpoint.com/calculation.html - A. Geographic midpoint
*/
private _computeAverageCoordinates(points: Array<Ilatlngxyz>): Ilatlngxyz {
let result: Ilatlngxyz = { lat: 0, lng: 0, x: 0, y: 0, z: 0 };
if (points && points.length > 0) {
for (let p of points) {
result.x += p.x;
result.y += p.y;
result.z += p.z;
}
result.x = result.x / points.length;
result.y = result.y / points.length;
result.z = result.z / points.length;
return this._cartesianToRadians(result);
}
return result;
}
/**
* cartesianToRadians - converts x, y, z cartesian coordinates to lat/lng in radians
*
* Adapted from http://www.geomidpoint.com/calculation.html - A. Geographic midpoint
*/
private _cartesianToRadians(cartesianPoint: Icartesian): Ilatlngxyz {
return {
lng: Math.atan2(cartesianPoint.y, cartesianPoint.x),
lat: Math.atan2(cartesianPoint.z, Math.sqrt(cartesianPoint.x * cartesianPoint.x + cartesianPoint.y * cartesianPoint.y)),
x: cartesianPoint.x,
y: cartesianPoint.y,
z: cartesianPoint.z
};
}
/**
* sumRadianDistance - calculates the sum of radian distance from
* a given point to all points in an array
*/
private _sumRadianDistance(fromPoint: Ilatlngxyz, toPoints: Array<Ilatlngxyz>): number {
let result: number = 0;
for (let toPoint of toPoints) {
result += this.radianDistance(fromPoint, toPoint);
}
return result;
}
/**
* testCandidateCenterPoints - For an array of potential new center of min distance
* points, tests each, returning the best point or the existing point
*/
private _testCandidateCenterPoints(candidates: Array<Ilatlngxyz>, points: Array<Ilatlngxyz>, existingBest: IdistanceCenterResult): IdistanceCenterResult {
let result: IdistanceCenterResult = {
point: {
lat: existingBest.point.lat,
lng: existingBest.point.lng
},
avgDist: existingBest.avgDist,
totalDist: existingBest.totalDist
};
for (let cp of candidates) {
let dist = this._sumRadianDistance(cp, points);
if (dist < result.totalDist) {
result.point.lat = cp.lat;
result.point.lng = cp.lng;
result.totalDist = dist;
}
}
return result;
}
/**
* destinationPointRadians - Calculates the destination point in radians
* from a starting point, bearing and distance (all in radians)
*/
private _destinationPointRadians(start: Ilatlng, bearing: number, distance: number): Ilatlng {
let lat = Math.asin(Math.sin(start.lat) * Math.cos(distance) +
Math.cos(start.lat) * Math.sin(distance) * Math.cos(bearing));
let lng = start.lng + Math.atan2(Math.sin(bearing) * Math.sin(distance) * Math.cos(start.lat),
Math.cos(distance) - Math.sin(start.lat) * Math.sin(lat));
// normalize lat / lng
if (Math.abs(lat) > (Math.PI / 2)) {
lat = Math.PI - lat - 2 * Math.PI * (lat < -Math.PI / 2 ? 1 : 0);
lng = lng - Math.PI;
}
if (lng > Math.PI) {
lng = lng - 2 * Math.PI;
} else if (lng < -Math.PI) {
lng = lng + 2 * Math.PI;
}
return { lat: lat, lng: lng };
}
}