forked from gkswjdzz/ainized-detectron2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapply_net-gpu.py
141 lines (128 loc) · 4.77 KB
/
apply_net-gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import argparse
import glob
import logging
import os
import pickle
import sys
from typing import Any, ClassVar, Dict, List
import torch
from detectron2.config import get_cfg
from detectron2.data.detection_utils import read_image
from detectron2.engine.defaults import DefaultPredictor
from detectron2.structures.boxes import BoxMode
from detectron2.structures.instances import Instances
from detectron2.utils.logger import setup_logger
from densepose import add_densepose_config
from densepose.utils.logger import verbosity_to_level
from densepose.vis.base import CompoundVisualizer
from densepose.vis.bounding_box import ScoredBoundingBoxVisualizer
from densepose.vis.densepose import (
DensePoseResultsContourVisualizer,
DensePoseResultsFineSegmentationVisualizer,
DensePoseResultsUVisualizer,
DensePoseResultsVVisualizer,
)
from densepose.vis.extractor import CompoundExtractor, create_extractor
opts = []
config_fpath='/workspace/detectron2_repo/configs/densepose_rcnn_R_50_FPN_s1x_legacy.yaml'
model_fpath='/workspace/detectron2_repo/densepose_rcnn_R_50_FPN_s1x.pkl'
def setup_config():
cfg = get_cfg()
add_densepose_config(cfg)
cfg.merge_from_file(config_fpath)
if opts:
cfg.merge_from_list(opts)
cfg.MODEL.WEIGHTS = model_fpath
cfg.MODEL.DEVICE = 'cuda'
cfg.freeze()
return cfg
cfg = setup_config()
class Action(object):
pass
class InferenceAction(Action):
@classmethod
def execute(cls: type, args: argparse.Namespace):
predictor = DefaultPredictor(cfg)
file_list = [args.input]
context = cls.create_context(args)
for file_name in file_list:
img = file_name
# img = read_image(file_name, format="BGR") # predictor expects BGR image.
with torch.no_grad():
outputs = predictor(img)["instances"]
out_binary = cls.execute_on_outputs(context, {"file_name": file_name, "image": img}, outputs)
cls.postexecute(context)
return out_binary
class ShowAction(InferenceAction):
"""
Show action that visualizes selected entries on an image
"""
COMMAND: ClassVar[str] = "show"
VISUALIZERS: ClassVar[Dict[str, object]] = {
"dp_contour": DensePoseResultsContourVisualizer,
"dp_segm": DensePoseResultsFineSegmentationVisualizer,
"dp_u": DensePoseResultsUVisualizer,
"dp_v": DensePoseResultsVVisualizer,
"bbox": ScoredBoundingBoxVisualizer,
}
@classmethod
def execute_on_outputs(
cls: type, context: Dict[str, Any], entry: Dict[str, Any], outputs: Instances
):
import cv2
import numpy as np
visualizer = context["visualizer"]
extractor = context["extractor"]
image_fpath = entry["file_name"]
image = cv2.cvtColor(entry["image"], cv2.COLOR_BGR2GRAY)
image = np.tile(image[:, :, np.newaxis], [1, 1, 3])
data = extractor(outputs)
image_vis = visualizer.visualize(image, data)
entry_idx = context["entry_idx"] + 1
out_fname = cls._get_out_fname(entry_idx, context["out_fname"])
# out_dir = os.path.dirname(out_fname)
# if len(out_dir) > 0 and not os.path.exists(out_dir):
# os.makedirs(out_dir)
# cv2.imwrite(out_fname, image_vis)
context["entry_idx"] += 1
return cv2.imencode('.jpg', image_vis)[1]
@classmethod
def postexecute(cls: type, context: Dict[str, Any]):
pass
@classmethod
def _get_out_fname(cls: type, entry_idx: int, fname_base: str):
base, ext = os.path.splitext(fname_base)
#return base + ".{0:04d}".format(entry_idx) + ext
return base + ext
@classmethod
def create_context(cls: type, args: argparse.Namespace) -> Dict[str, Any]:
vis_specs = args.visualizations.split(",")
visualizers = []
extractors = []
for vis_spec in vis_specs:
vis = cls.VISUALIZERS[vis_spec]()
visualizers.append(vis)
extractor = create_extractor(vis)
extractors.append(extractor)
visualizer = CompoundVisualizer(visualizers)
extractor = CompoundExtractor(extractors)
context = {
"extractor": extractor,
"visualizer": visualizer,
"out_fname": args.output,
"entry_idx": 0,
}
return context
def main(file_in_memory):
args = argparse.Namespace()
args.func=ShowAction.execute
args.input=file_in_memory
args.min_score=0.8
args.nms_thresh=None
args.output='outputres2.png'
args.verbosity=None
args.visualizations='dp_contour,bbox'
verbosity = args.verbosity if hasattr(args, "verbosity") else None
out_binary_buffer = args.func(args)
return out_binary_buffer