-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcaptcha_solver.py
191 lines (158 loc) · 6.7 KB
/
captcha_solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from collections import Counter
import pickle
import cv2
import imutils
from keras.models import load_model
import numpy as np
from sklearn.cluster import KMeans
class CaptchaSolver:
def __init__(self):
with open("number_model_labels.dat", "rb") as f:
self.label = pickle.load(f)
self.number_model = load_model("number_model.hdf5")
self.captcha_model = load_model("keras_model.h5", compile=False)
@staticmethod
def solve_star(gray):
# image = cv2.imread(image_path)
# gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
canny = cv2.Canny(gray, 28, 47, L2gradient=True)
dilated = cv2.dilate(canny, (2, 2), iterations=5)
contours, _ = cv2.findContours(
dilated.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
count = 0
for contour in contours:
*_, width, height = cv2.boundingRect(contour)
if (12 <= width <= 19) and (12 <= height <= 19):
count += 1
elif width > 19:
count += round(width / 16)
elif height > 19:
count += round(height / 16)
print("star count: ", count)
return count
def solve_number(self, gray):
# image = cv2.imread(image_file)
# gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
canny = cv2.Canny(gray, 28, 70, L2gradient=True)
dilated = cv2.dilate(canny, (2, 2), iterations=1)
contours, _ = cv2.findContours(
dilated.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
letter_image_regions = []
for contour in contours:
(x, y, w, h) = cv2.boundingRect(contour)
if (5 <= w <= 20) and (4 <= h <= 21):
letter_image_regions.append((x, y, w, h))
elif w > 20:
half_width = int(w / 2) + 3
letter_image_regions.append((x, y, half_width, h))
letter_image_regions.append((x + half_width, y, half_width, h))
if len(letter_image_regions) != 3:
print("image contours not 3 path: ")
return 0
letter_image_regions = sorted(letter_image_regions, key=lambda x: x[0])
predictions = []
for letter_bounding_box in letter_image_regions:
x, y, w, h = letter_bounding_box
margin = 1
letter_image = gray[
y - margin : y + h + margin, x - margin : x + w + margin
]
letter_image = resize_to_fit(letter_image, 20, 20)
letter_image = np.expand_dims(letter_image, axis=2)
letter_image = np.expand_dims(letter_image, axis=0)
prediction = self.number_model.predict(letter_image)
letter = self.label.inverse_transform(prediction)[0]
predictions.append(letter)
captcha_text = "".join(predictions)
try:
value = eval(captcha_text)
except SyntaxError:
print("predict failed!")
value = 0
print("Maths : {} = {}".format(captcha_text, value))
return value
def predict_captcha(self, gray):
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
# image = cv2.imread(image_path)
image = image_resize(gray, height=224)
image = cropTo(image)
image = cv2.flip(image, 1)
normalized_image_array = (image.astype(np.float32) / 127.0) - 1
data[0] = normalized_image_array
prediction = self.captcha_model.predict(data)
prediction = "number" if prediction[0][0] > prediction[0][1] else "star"
return prediction
class Preprocessor:
def __init__(self):
self.kmeans = KMeans(n_clusters=3)
def find_background(self, image):
modified_image = image.reshape(image.shape[0] * image.shape[1], 3)
labels = self.kmeans.fit_predict(modified_image)
counts = Counter(labels)
counts = {
key: value
for key, value in sorted(
counts.items(), key=lambda item: item[1], reverse=True
)
}
center_colors = self.kmeans.cluster_centers_
ordered_colors = [center_colors[i] for i in counts.keys()]
rgb_colors = [rgbvalue(color) for color in ordered_colors]
background = rgb_colors[1] if rgb_colors[0] == [0, 0, 0] else rgb_colors[0]
return background
def argonclick(self, image):
background = self.find_background(image.copy())
red = background[0]
moded = None
if red in range(80, 85):
# purple background reduce noise
moded = change_color(image.copy(), (0, 0, 0), (100, 99, 149))
change_color(moded, (61, 60, 109), (100, 99, 149))
change_color(moded, [109, 140, 95], (100, 99, 149))
change_color(moded, (91, 91, 139), (100, 99, 149))
change_color(moded, (95, 95, 144), (100, 99, 149))
change_color(moded, (68, 68, 116), (100, 99, 149))
change_color(moded, (61, 61, 109), (100, 99, 149))
change_color(moded, (79, 78, 126), (100, 99, 149))
change_color(moded, (31, 31, 31), (100, 99, 149))
change_color(moded, (62, 62, 62), (100, 99, 149))
elif red in range(108, 113) or red in range(98, 100):
# green background reduce noice
moded = change_color(image.copy(), (0, 0, 0), [87, 118, 74])
change_color(moded, (138, 168, 125), [87, 118, 74])
change_color(moded, (78, 78, 126), [87, 118, 74])
change_color(moded, (110, 140, 96), [87, 118, 74])
change_color(moded, (31, 31, 31), [87, 118, 74])
change_color(moded, (62, 62, 62), [87, 118, 74])
else:
print(f"new color: {background}")
return moded
def image_resize(image, height, inter=cv2.INTER_AREA):
dim = None
(h, w) = image.shape[:2]
r = height / float(h)
dim = (int(w * r), height)
resized = cv2.resize(image, dim, interpolation=inter)
return resized
def cropTo(img):
_, width = img.shape[:2]
sideCrop = (width - 224) // 2
return img[:, sideCrop : (width - sideCrop)]
def resize_to_fit(image, width, height):
(h, w) = image.shape[:2]
if w > h:
image = imutils.resize(image, width=width)
else:
image = imutils.resize(image, height=height)
padW = int((width - image.shape[1]) / 2.0)
padH = int((height - image.shape[0]) / 2.0)
image = cv2.copyMakeBorder(image, padH, padH, padW, padW, cv2.BORDER_REPLICATE)
image = cv2.resize(image, (width, height))
return image
def change_color(image, old_rgb, new_rgb):
image[np.where((image == old_rgb).all(axis=2))] = new_rgb
return image
def rgbvalue(colors):
return [int(color) for color in colors]