-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine.py
113 lines (96 loc) · 4.1 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
print("Importing libraries... (Step 0 of 4)")
from vid2frames import convert2frames
from preprocess import pre_process
from classify import classify, Classifier, Labeller
from process import process
from typing import Union
import os
import time
# Helper function to print on high-contrast background
def print_info(text:str):
print(f"\033[1;37;40m{text}\033[0m")
# Helper function to print black text on yellow background
def print_important(text:str):
print(f"\033[1;30;43m{text}\033[0m")
class Engine:
"""
The final deliverable engine
"""
def __init__(self):
self.input_files = []
self.identifiers = [] # Internal names for intermediate files
self.output_dir = ""
self.classifier: Union[Classifier, None] = None
self.labeller: Union[Labeller, None] = None
def solicit_files(self):
"""
Gets the video files and output_dir from the user
"""
# Get input files
while True:
file = input("Enter a video file to process (or nothing to finish):\n")
if file == "":
break
self.input_files.append(file)
# Set identifiers simply as filenames
self.identifiers = [text.split("/")[-1].split(".")[0] for text in self.input_files]
# Check for duplicate identifiers
assert len(self.identifiers) == len(set(self.identifiers)), "Duplicate identifiers found. Make sure each file has a unique name."
# Get output directory
self.output_dir = input("Enter the output directory:\n")
def _prepare_internal(self):
"""
Once input/output is set, reset folder structure to be ready for intermediate
and final data
"""
# Reset the intermediate data
intermediate_dirs = [f"data/images/{identifier}" for identifier in self.identifiers]
intermediate_dirs += [f"data/boxes/{identifier}" for identifier in self.identifiers]
intermediate_dirs += [f"data/boxes/{identifier}/color" for identifier in self.identifiers]
intermediate_dirs += [f"data/boxes/{identifier}/bw" for identifier in self.identifiers]
for dir in intermediate_dirs:
if os.path.exists(dir):
os.system(f"rm -rf {dir}")
os.system(f"mkdir {dir}")
# Reset the output
if os.path.exists(self.output_dir):
os.system(f"rm -rf {self.output_dir}")
os.system(f"mkdir {self.output_dir}")
for identifier in self.identifiers:
os.system(f"mkdir {self.output_dir}/{identifier}")
def do_work(self, ix: int) -> float:
print_info("Converting video to frames... (Step 1 of 4)")
duration = convert2frames(
self.input_files[ix],
f"data/images/{self.identifiers[ix]}",
fps=1/5 # Capture 1 frame every 5 seconds
)
print_info("Pre-processing frames... (Step 2 of 4)")
pre_process(
"data/images",
f"data/boxes/{self.identifiers[ix]}",
conf_threshold=70,
should_binarize=True,
binarize_threshold=100,
save_as_new_imgs=True
)
print_info("Classifying and labelling boxes... (Step 3 of 4)")
self.classifier, self.labeller = classify(f"data/boxes/{self.identifiers[ix]}")
print_info("Processing Data... (Step 4 of 4)")
process(f"data/boxes/{self.identifiers[ix]}", f"{self.output_dir}/{self.identifiers[ix]}", self.classifier, self.labeller)
return duration
def run(self):
self.solicit_files()
self._prepare_internal()
for ix in range(len(self.input_files)):
print()
print_info(f"Processing video {ix+1} of {len(self.input_files)}")
# Time the work
start = time.time()
duration = self.do_work(ix)
end = time.time()
print_important(f"Finished processing video {ix+1} of {len(self.input_files)} in {(end-start):.2f} seconds")
print_important(f"Real-time factor: {duration/(end-start):.2f}")
if __name__ == "__main__":
engine = Engine()
engine.run()