-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex40p.cpp
438 lines (373 loc) · 13.4 KB
/
ex40p.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
// MFEM Example 40 - Parallel Version
//
// Compile with: make ex40p
//
// Sample runs: mpirun -np 4 ex40p -step 10 -gr 2.0
// mpirun -np 4 ex40p -step 10 -gr 2.0 -o 3 -r 1
// mpirun -np 4 ex40p -step 10 -gr 2.0 -r 4 -m ../data/l-shape.mesh
// mpirun -np 4 ex40p -step 10 -gr 2.0 -r 2 -m ../data/fichera.mesh
//
// Description: This example code demonstrates how to use MFEM to solve the
// eikonal equation,
//
// |∇𝑢| = 1 in Ω, 𝑢 = g on ∂Ω.
//
// The solution of this problem coincides with the unique optimum of
// the nonlinear program
//
// maximize ∫_Ω 𝑢 d𝑥 subject to |∇𝑢| ≤ 1, 𝑢 = g on Ω, (⋆)
//
// which is the foundation for method implemented below.
//
// Following the proximal Galerkin methodology [1] (see also Example
// 36), we construct a Legendre function for the unit ball
// 𝐵₁ := {𝑥 ∈ Rⁿ | |𝑥| < 1}. Our choice is the Hellinger entropy,
//
// h(𝑥) = −( 1 − |𝑥|² )^{1/2},
//
// although other choices are possible, each leading to a slightly
// different algorithm. We then adaptively regularize the optimization
// problem (⋆) with the Bregman divergence of the Hellinger entropy,
//
// maximize ∫_Ω 𝑢 d𝑥 - αₖ⁻¹ Dₕ(∇𝑢,∇𝑢ₖ₋₁) subject to 𝑢 = g on Ω.
//
// This results in a sequence of functions ( 𝜓ₖ , 𝑢ₖ ),
//
// 𝑢ₖ → 𝑢, 𝜓ₖ/|𝜓ₖ| → ∇𝑢 as k → \infty,
//
// defined by the nonlinear saddle-point problems
//
// Find 𝜓ₖ ∈ H(div,Ω) and 𝑢ₖ ∈ L²(Ω) such that
// ( Zₖ(𝜓ₖ) , τ ) + ( 𝑢ₖ , ∇⋅τ ) = ⟨ g , τ⋅n ⟩ ∀ τ ∈ H(div,Ω)
// ( ∇⋅𝜓ₖ , v ) = ( ∇⋅𝜓ₖ₋₁ - 1 , v ) ∀ v ∈ L²(Ω)
//
// where Zₖ(𝜓) := ∇h⁻¹(αₖ 𝜓) = 𝜓 / ( αₖ⁻² + |𝜓|² )^{1/2} and step size
// αₖ > 0. These saddle-point problems are solved using a damped Newton's
// method. This example assumes that g = 0 and allows the step size to
// grow geometrically, αₖ = α₀rᵏ, where r ≥ 1 is the growth rate.
//
// [1] Keith, B. and Surowiec, T. (2023) Proximal Galerkin: A structure-
// preserving finite element method for pointwise bound constraints.
// arXiv:2307.12444 [math.NA]
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
class ZCoefficient : public VectorCoefficient
{
protected:
ParGridFunction *psi;
real_t alpha;
public:
ZCoefficient(int vdim, ParGridFunction &psi_, real_t alpha_ = 1.0)
: VectorCoefficient(vdim), psi(&psi_), alpha(alpha_) { }
using VectorCoefficient::Eval;
void Eval(Vector &V, ElementTransformation &T,
const IntegrationPoint &ip) override;
void SetAlpha(real_t alpha_) { alpha = alpha_; }
};
class DZCoefficient : public MatrixCoefficient
{
protected:
ParGridFunction *psi;
real_t alpha;
public:
DZCoefficient(int height, ParGridFunction &psi_, real_t alpha_ = 1.0)
: MatrixCoefficient(height), psi(&psi_), alpha(alpha_) { }
void Eval(DenseMatrix &K, ElementTransformation &T,
const IntegrationPoint &ip) override;
void SetAlpha(real_t alpha_) { alpha = alpha_; }
};
int main(int argc, char *argv[])
{
// 0. Initialize MPI and HYPRE.
Mpi::Init();
int num_procs = Mpi::WorldSize();
int myid = Mpi::WorldRank();
Hypre::Init();
// 1. Parse command-line options.
const char *mesh_file = "../data/star.mesh";
int order = 1;
int max_it = 5;
int ref_levels = 3;
real_t alpha = 1.0;
real_t growth_rate = 1.0;
real_t newton_scaling = 0.9;
real_t tichonov = 1e-1;
real_t tol = 1e-4;
bool visualization = true;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&ref_levels, "-r", "--refs",
"Number of h-refinements.");
args.AddOption(&max_it, "-mi", "--max-it",
"Maximum number of iterations");
args.AddOption(&tol, "-tol", "--tol",
"Stopping criteria based on the difference between"
"successive solution updates");
args.AddOption(&alpha, "-step", "--step",
"Initial size alpha");
args.AddOption(&growth_rate, "-gr", "--growth-rate",
"Growth rate of the step size alpha");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.Parse();
if (!args.Good())
{
if (myid == 0)
{
args.PrintUsage(cout);
}
return 1;
}
if (myid == 0)
{
args.PrintOptions(cout);
}
// 2. Read the mesh from the mesh file.
Mesh mesh(mesh_file, 1, 1);
int dim = mesh.Dimension();
int sdim = mesh.SpaceDimension();
MFEM_ASSERT(mesh.bdr_attributes.Size(),
"This example does not currently support meshes"
" without boundary attributes."
)
// 3. Postprocess the mesh.
// 3A. Refine the mesh to increase the resolution.
for (int l = 0; l < ref_levels; l++)
{
mesh.UniformRefinement();
}
// 3B. Interpolate the geometry after refinement to control geometry error.
// NOTE: Minimum second-order interpolation is used to improve the accuracy.
int curvature_order = max(order,2);
mesh.SetCurvature(curvature_order);
ParMesh pmesh(MPI_COMM_WORLD, mesh);
mesh.Clear();
// 4. Define the necessary finite element spaces on the mesh.
RT_FECollection RTfec(order, dim);
ParFiniteElementSpace RTfes(&pmesh, &RTfec);
L2_FECollection L2fec(order, dim);
ParFiniteElementSpace L2fes(&pmesh, &L2fec);
int num_dofs_RT = RTfes.GlobalTrueVSize();
int num_dofs_L2 = L2fes.GlobalTrueVSize();
if (myid == 0)
{
cout << "Number of H(div) dofs: "
<< num_dofs_RT << endl;
cout << "Number of L² dofs: "
<< num_dofs_L2 << endl;
}
// 5. Define the offsets for the block matrices
Array<int> offsets(3);
offsets[0] = 0;
offsets[1] = RTfes.GetVSize();
offsets[2] = L2fes.GetVSize();
offsets.PartialSum();
Array<int> toffsets(3);
toffsets[0] = 0;
toffsets[1] = RTfes.GetTrueVSize();
toffsets[2] = L2fes.GetTrueVSize();
toffsets.PartialSum();
BlockVector x(offsets), rhs(offsets);
x = 0.0; rhs = 0.0;
BlockVector tx(toffsets), trhs(toffsets);
tx = 0.0; trhs = 0.0;
// 6. Define the solution vectors as a finite element grid functions
// corresponding to the fespaces.
ParGridFunction u_gf, delta_psi_gf;
delta_psi_gf.MakeRef(&RTfes,x,offsets[0]);
u_gf.MakeRef(&L2fes,x,offsets[1]);
ParGridFunction psi_old_gf(&RTfes);
ParGridFunction psi_gf(&RTfes);
ParGridFunction u_old_gf(&L2fes);
// 7. Define initial guesses for the solution variables.
delta_psi_gf = 0.0;
psi_gf = 0.0;
u_gf = 0.0;
psi_old_gf = psi_gf;
u_old_gf = u_gf;
// 8. Prepare for glvis output.
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock;
if (visualization)
{
sol_sock.open(vishost,visport);
sol_sock.precision(8);
}
// 9. Coefficients to be used later.
ConstantCoefficient neg_one(-1.0);
ConstantCoefficient zero(0.0);
ConstantCoefficient tichonov_cf(tichonov);
ConstantCoefficient neg_tichonov_cf(-1.0*tichonov);
ZCoefficient Z(sdim, psi_gf, alpha);
DZCoefficient DZ(sdim, psi_gf, alpha);
ScalarVectorProductCoefficient neg_Z(-1.0, Z);
DivergenceGridFunctionCoefficient div_psi_cf(&psi_gf);
DivergenceGridFunctionCoefficient div_psi_old_cf(&psi_old_gf);
SumCoefficient psi_old_minus_psi(div_psi_old_cf, div_psi_cf, 1.0, -1.0);
// 10. Assemble constant matrices/vectors to avoid reassembly in the loop.
ParLinearForm b0, b1;
b0.MakeRef(&RTfes,rhs.GetBlock(0),0);
b1.MakeRef(&L2fes,rhs.GetBlock(1),0);
b0.AddDomainIntegrator(new VectorFEDomainLFIntegrator(neg_Z));
b1.AddDomainIntegrator(new DomainLFIntegrator(neg_one));
b1.AddDomainIntegrator(new DomainLFIntegrator(psi_old_minus_psi));
ParBilinearForm a00(&RTfes);
a00.AddDomainIntegrator(new VectorFEMassIntegrator(DZ));
a00.AddDomainIntegrator(new VectorFEMassIntegrator(tichonov_cf));
ParMixedBilinearForm a10(&RTfes,&L2fes);
a10.AddDomainIntegrator(new VectorFEDivergenceIntegrator());
a10.Assemble();
a10.Finalize();
HypreParMatrix *A10 = a10.ParallelAssemble();
HypreParMatrix *A01 = A10->Transpose();
ParBilinearForm a11(&L2fes);
a11.AddDomainIntegrator(new MassIntegrator(neg_tichonov_cf));
a11.Assemble();
a11.Finalize();
HypreParMatrix *A11 = a11.ParallelAssemble();
// 11. Iterate.
int k;
int total_iterations = 0;
real_t increment_u = 0.1;
ParGridFunction u_tmp(&L2fes);
for (k = 0; k < max_it; k++)
{
u_tmp = u_old_gf;
Z.SetAlpha(alpha);
DZ.SetAlpha(alpha);
if (myid == 0)
{
mfem::out << "\nOUTER ITERATION " << k+1 << endl;
}
int j;
for ( j = 0; j < 5; j++)
{
total_iterations++;
b0.Assemble();
b0.ParallelAssemble(trhs.GetBlock(0));
b1.Assemble();
b1.ParallelAssemble(trhs.GetBlock(1));
a00.Assemble(false);
a00.Finalize(false);
HypreParMatrix *A00 = a00.ParallelAssemble();
// Construct Schur-complement preconditioner
HypreParVector A00_diag(MPI_COMM_WORLD, A00->GetGlobalNumRows(),
A00->GetRowStarts());
A00->GetDiag(A00_diag);
HypreParMatrix S_tmp(*A01);
S_tmp.InvScaleRows(A00_diag);
HypreParMatrix *S = ParMult(A10, &S_tmp, true);
BlockDiagonalPreconditioner prec(toffsets);
HypreBoomerAMG P00(*A00);
P00.SetPrintLevel(0);
HypreBoomerAMG P11(*S);
P11.SetPrintLevel(0);
prec.SetDiagonalBlock(0,&P00);
prec.SetDiagonalBlock(1,&P11);
BlockOperator A(toffsets);
A.SetBlock(0,0,A00);
A.SetBlock(1,0,A10);
A.SetBlock(0,1,A01);
A.SetBlock(1,1,A11);
GMRESSolver gmres(MPI_COMM_WORLD);
gmres.SetPrintLevel(-1);
gmres.SetRelTol(1e-8);
gmres.SetMaxIter(2000);
gmres.SetKDim(500);
gmres.SetOperator(A);
gmres.SetPreconditioner(prec);
gmres.Mult(trhs,tx);
delete S;
delete A00;
delta_psi_gf.SetFromTrueDofs(tx.GetBlock(0));
u_gf.SetFromTrueDofs(tx.GetBlock(1));
u_tmp -= u_gf;
real_t Newton_update_size = u_tmp.ComputeL2Error(zero);
u_tmp = u_gf;
// Damped Newton update
psi_gf.Add(newton_scaling, delta_psi_gf);
a00.Update();
if (visualization)
{
sol_sock << "parallel " << num_procs << " " << myid << "\n";
sol_sock << "solution\n" << pmesh << u_gf << "window_title 'Discrete solution'"
<< flush;
}
if (myid == 0)
{
mfem::out << "Newton_update_size = " << Newton_update_size << endl;
}
if (Newton_update_size < increment_u)
{
break;
}
}
u_tmp = u_gf;
u_tmp -= u_old_gf;
increment_u = u_tmp.ComputeL2Error(zero);
if (myid == 0)
{
mfem::out << "Number of Newton iterations = " << j+1 << endl;
mfem::out << "Increment (|| uₕ - uₕ_prvs||) = " << increment_u << endl;
}
u_old_gf = u_gf;
psi_old_gf = psi_gf;
if (increment_u < tol || k == max_it-1)
{
break;
}
alpha *= max(growth_rate, 1_r);
}
// 12. Print stats.
if (myid == 0)
{
mfem::out << "\n Outer iterations: " << k+1
<< "\n Total iterations: " << total_iterations
<< "\n Total dofs: " << RTfes.GetTrueVSize() + L2fes.GetTrueVSize()
<< endl;
}
// 13. Free the used memory.
delete A01;
delete A10;
delete A11;
return 0;
}
void ZCoefficient::Eval(Vector &V, ElementTransformation &T,
const IntegrationPoint &ip)
{
MFEM_ASSERT(psi != NULL, "grid function is not set");
MFEM_ASSERT(alpha > 0, "alpha is not positive");
Vector psi_vals(vdim);
psi->GetVectorValue(T, ip, psi_vals);
real_t norm = psi_vals.Norml2();
real_t phi = 1.0 / sqrt(1.0/(alpha*alpha) + norm*norm);
V = psi_vals;
V *= phi;
}
void DZCoefficient::Eval(DenseMatrix &K, ElementTransformation &T,
const IntegrationPoint &ip)
{
MFEM_ASSERT(psi != NULL, "grid function is not set");
MFEM_ASSERT(alpha > 0, "alpha is not positive");
Vector psi_vals(height);
psi->GetVectorValue(T, ip, psi_vals);
real_t norm = psi_vals.Norml2();
real_t phi = 1.0 / sqrt(1.0/(alpha*alpha) + norm*norm);
K = 0.0;
for (int i = 0; i < height; i++)
{
K(i,i) = phi;
for (int j = 0; j < height; j++)
{
K(i,j) -= psi_vals(i) * psi_vals(j) * pow(phi, 3);
}
}
}