-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathkbmtl_semisupervised_classification_variational_train.m
executable file
·77 lines (66 loc) · 2.73 KB
/
kbmtl_semisupervised_classification_variational_train.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
function state = kbmtl_semisupervised_classification_variational_train(K, Y, parameters)
rand('state', parameters.seed); %#ok<RAND>
randn('state', parameters.seed); %#ok<RAND>
D = size(K, 1);
N = size(K, 2);
T = size(Y, 2);
R = parameters.R;
sigma_h = parameters.sigma_h;
sigma_w = parameters.sigma_w;
Lambda.alpha = (parameters.alpha_lambda + 0.5) * ones(D, R);
Lambda.beta = parameters.beta_lambda * ones(D, R);
A.mu = randn(D, R);
A.sigma = repmat(eye(D, D), [1, 1, R]);
H.mu = randn(R, N);
H.sigma = repmat(eye(R, R), [1, 1, N]);
W.mu = randn(R, T);
W.sigma = repmat(eye(R, R), [1, 1, T]);
F.mu = (abs(randn(N, T)) + parameters.margin) .* sign(Y);
F.sigma = ones(N, T);
KKT = K * K';
lower = -1e40 * ones(N, T);
lower(Y > 0) = +parameters.margin;
upper = +1e40 * ones(N, T);
upper(Y < 0) = -parameters.margin;
for iter = 1:parameters.iteration
if mod(iter, 1) == 0
fprintf(1, '.');
end
if mod(iter, 10) == 0
fprintf(1, ' %5d\n', iter);
end
%%%% update Lambda
for s = 1:R
Lambda.beta(:, s) = 1 ./ (1 / parameters.beta_lambda + 0.5 * (A.mu(:, s).^2 + diag(A.sigma(:, :, s))));
end
%%%% update A
for s = 1:R
A.sigma(:, :, s) = (diag(Lambda.alpha(:, s) .* Lambda.beta(:, s)) + KKT / sigma_h^2) \ eye(D, D);
A.mu(:, s) = A.sigma(:, :, s) * (K * H.mu(s, :)' / sigma_h^2);
end
%%%% update H
for i = 1:N
indices = ~isnan(Y(i, :));
H.sigma(:, :, i) = (eye(R, R) / sigma_h^2 + W.mu(:, indices) * W.mu(:, indices)' + sum(W.sigma(:, :, indices), 3)) \ eye(R, R);
H.mu(:, i) = H.sigma(:, :, i) * (A.mu' * K(:, i) / sigma_h^2 + W.mu(:, indices) * F.mu(i, indices)');
end
%%%% update W
for t = 1:T
indices = ~isnan(Y(:, t));
W.sigma(:, :, t) = (eye(R, R) / sigma_w^2 + H.mu(:, indices) * H.mu(:, indices)' + sum(H.sigma(:, :, indices), 3)) \ eye(R, R);
W.mu(:, t) = W.sigma(:, :, t) * (H.mu(:, indices) * F.mu(indices, t));
end
%%%% update F
output = H.mu' * W.mu;
alpha_norm = lower - output;
beta_norm = upper - output;
normalization = normcdf(beta_norm) - normcdf(alpha_norm);
normalization(normalization == 0) = 1;
F.mu = output + (normpdf(alpha_norm) - normpdf(beta_norm)) ./ normalization;
F.sigma = 1 + (alpha_norm .* normpdf(alpha_norm) - beta_norm .* normpdf(beta_norm)) ./ normalization - (normpdf(alpha_norm) - normpdf(beta_norm)).^2 ./ normalization.^2;
end
state.Lambda = Lambda;
state.A = A;
state.W = W;
state.parameters = parameters;
end