diff --git a/python/lsst/meas/algorithms/computeExPsf.py b/python/lsst/meas/algorithms/computeExPsf.py
index 2557d40e0..9447ff0ae 100644
--- a/python/lsst/meas/algorithms/computeExPsf.py
+++ b/python/lsst/meas/algorithms/computeExPsf.py
@@ -1,3 +1,24 @@
+# This file is part of meas_algorithms.
+#
+# Developed for the LSST Data Management System.
+# This product includes software developed by the LSST Project
+# (https://www.lsst.org).
+# See the COPYRIGHT file at the top-level directory of this distribution
+# for details of code ownership.
+#
+# This program is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program. If not, see .
+
from lsst.pex.config import Config, Field
from lsst.pipe.base import Task
import treecorr
@@ -26,29 +47,35 @@ class ComputeExPsfConfig(Config):
class ComputeExPsfTask(Task):
"""Compute Ex for PSF.
- TO DO: more explanations.
+ Compute scalar correlation function from
+ PSF ellipticity residuals to compute TEx
+ metrics.
Parameters
----------
de1: `numpy.array`
- TO DO.
+ PSF ellipticity residuals component 1.
de2: `numpy.array`
- TO DO.
+ PSF ellipticity residuals component 2.
ra: `numpy.array`
- TO DO.
+ Right ascension coordinate.
dec: `numpy.array`
- TO DO.
+ Declination coordinate.
units: `str`
- TO DO.
+ In which units are ra and dec. units supported
+ are the same as the one in treecorr.
Returns
-------
kk_E1: `float`
- TO DO.
+ scalar correlation function, compute
+ in an angular bin define in ComputeExPsfConfig.
kk_E2: `float`
- TO DO.
+ scalar correlation function, compute
+ in an angular bin define in ComputeExPsfConfig.
kk_Ex: `float`
- TO DO.
+ scalar cross-correlation function, compute
+ in an angular bin define in ComputeExPsfConfig.
"""
ConfigClass = ComputeExPsfConfig
diff --git a/tests/test_computeExPsf.py b/tests/test_computeExPsf.py
index 5d0a6de41..02679a388 100644
--- a/tests/test_computeExPsf.py
+++ b/tests/test_computeExPsf.py
@@ -67,8 +67,57 @@ def generate_gaussian_random_field(
seed=42,
input_coord=None,
):
- """
- TO DO.
+ """Generate a Gaussian Random Field.
+
+ Function to generate a Gaussian Random Field.
+ Help for unit test and generate spatial correlated
+ function and have an analytical 2-point correlation
+ to compared with (Gaussian here).
+
+ Parameters
+ ----------
+ xmin: `int`
+ Min value in x direction.
+ Default: ``0``
+ xmax: `int`
+ Max value in x direction.
+ Default: ``2000``
+ ymin: `int`
+ Min value in y direction.
+ Default: ``0``
+ ymax: `int`
+ Max value in y direction.
+ Default: ``2000``
+ npoints: `int`
+ Number of data points generated.
+ Default: ``10000``
+ nmax: `int`
+ Max number of data points generated using
+ `np.random.multivariate_normal`. If
+ npoints>nmax, a GP will be used in addition.
+ Default: ``1000``
+ std: `float`
+ Amplitude of the gaussian random field.
+ Default: ``1.0``
+ correlation_length: `float`
+ Correlation length of the gaussian random field.
+ Default: ``10.0``
+ white_noise: `float`
+ Noise added to the gaussian random field.
+ Default: ``1.0``
+ seed: `int`
+ Seed of the random generator.
+ Default: ``42``
+ input_coord: `np.array`
+ Take a input coord to generate the Gaussian Random field
+ Default: ``None``
+
+ Returns
+ -------
+ coord: `np.array`
+ 2D coordinate of the gaussian random field
+ z: `np.array`
+ Scalar value of the gaussian random field
"""
np.random.seed(seed)
@@ -169,6 +218,10 @@ def test_comp_ex_psf(self):
task = ComputeExPsfTask(config)
kk_E1, kk_E2, kk_Ex = task.run(self.de1, self.de2, ra, dec, units="arcmin")
+ # At small scale, expect the scalar two-point correlation function
+ # to be close to the input variance for de1 and de2. Cross correlation
+ # between de1 and de2 should be zeros are they are 2 indendant field.
+
np.testing.assert_allclose(kk_E1, 1.0, atol=2e-1)
np.testing.assert_allclose(kk_E2, 1.0, atol=2e-1)
np.testing.assert_allclose(kk_Ex, 0.0, atol=1e-1)
@@ -177,6 +230,9 @@ def test_comp_ex_psf(self):
config.thetaMin = 600.0
config.thetaMax = 1000.0
+ # At large scale, expect the scalar two-point correlation function to
+ # be all close to 0.
+
task = ComputeExPsfTask(config)
kk_E1, kk_E2, kk_Ex = task.run(self.de1, self.de2, ra, dec, units="arcmin")