diff --git a/.github/ISSUE_TEMPLATE/bug_report.yml b/.github/ISSUE_TEMPLATE/bug_report.yml
index 5876e941085..c86bd8a680b 100644
--- a/.github/ISSUE_TEMPLATE/bug_report.yml
+++ b/.github/ISSUE_TEMPLATE/bug_report.yml
@@ -91,7 +91,7 @@ body:
id: logs
attributes:
label: Console logs
- description: Please provide **full** cmd/terminal logs from the moment you started UI to the end of it, after the bug occured. If it's very long, provide a link to pastebin or similar service.
+ description: Please provide **full** cmd/terminal logs from the moment you started UI to the end of it, after the bug occurred. If it's very long, provide a link to pastebin or similar service.
render: Shell
validations:
required: true
diff --git a/.gitignore b/.gitignore
index de8324af632..229e37d48a2 100644
--- a/.gitignore
+++ b/.gitignore
@@ -2,6 +2,7 @@ __pycache__
*.ckpt
*.safetensors
*.pth
+.DS_Store
/ESRGAN/*
/SwinIR/*
/repositories
@@ -41,3 +42,5 @@ notification.mp3
/.coverage*
/test/test_outputs
/cache
+trace.json
+/sysinfo-????-??-??-??-??.json
diff --git a/CHANGELOG.md b/CHANGELOG.md
index 5c16b561132..301bfd068d9 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -1,7 +1,118 @@
+## 1.10.0
+
+### Features:
+* A lot of performance improvements (see below in Performance section)
+* Stable Diffusion 3 support ([#16030](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16030), [#16164](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16164), [#16212](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16212))
+ * Recommended Euler sampler; DDIM and other timestamp samplers currently not supported
+ * T5 text model is disabled by default, enable it in settings
+* New schedulers:
+ * Align Your Steps ([#15751](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15751))
+ * KL Optimal ([#15608](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15608))
+ * Normal ([#16149](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16149))
+ * DDIM ([#16149](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16149))
+ * Simple ([#16142](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16142))
+ * Beta ([#16235](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16235))
+* New sampler: DDIM CFG++ ([#16035](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16035))
+
+### Minor:
+* Option to skip CFG on early steps ([#15607](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15607))
+* Add --models-dir option ([#15742](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15742))
+* Allow mobile users to open context menu by using two fingers press ([#15682](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15682))
+* Infotext: add Lora name as TI hashes for bundled Textual Inversion ([#15679](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15679))
+* Check model's hash after downloading it to prevent corruped downloads ([#15602](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15602))
+* More extension tag filtering options ([#15627](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15627))
+* When saving AVIF, use JPEG's quality setting ([#15610](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15610))
+* Add filename pattern: `[basename]` ([#15978](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15978))
+* Add option to enable clip skip for clip L on SDXL ([#15992](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15992))
+* Option to prevent screen sleep during generation ([#16001](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16001))
+* ToggleLivePriview button in image viewer ([#16065](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16065))
+* Remove ui flashing on reloading and fast scrollong ([#16153](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16153))
+* option to disable save button log.csv ([#16242](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16242))
+
+### Extensions and API:
+* Add process_before_every_sampling hook ([#15984](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15984))
+* Return HTTP 400 instead of 404 on invalid sampler error ([#16140](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16140))
+
+### Performance:
+* [Performance 1/6] use_checkpoint = False ([#15803](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15803))
+* [Performance 2/6] Replace einops.rearrange with torch native ops ([#15804](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15804))
+* [Performance 4/6] Precompute is_sdxl_inpaint flag ([#15806](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15806))
+* [Performance 5/6] Prevent unnecessary extra networks bias backup ([#15816](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15816))
+* [Performance 6/6] Add --precision half option to avoid casting during inference ([#15820](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15820))
+* [Performance] LDM optimization patches ([#15824](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15824))
+* [Performance] Keep sigmas on CPU ([#15823](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15823))
+* Check for nans in unet only once, after all steps have been completed
+* Added pption to run torch profiler for image generation
+
+### Bug Fixes:
+* Fix for grids without comprehensive infotexts ([#15958](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15958))
+* feat: lora partial update precede full update ([#15943](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15943))
+* Fix bug where file extension had an extra '.' under some circumstances ([#15893](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15893))
+* Fix corrupt model initial load loop ([#15600](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15600))
+* Allow old sampler names in API ([#15656](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15656))
+* more old sampler scheduler compatibility ([#15681](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15681))
+* Fix Hypertile xyz ([#15831](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15831))
+* XYZ CSV skipinitialspace ([#15832](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15832))
+* fix soft inpainting on mps and xpu, torch_utils.float64 ([#15815](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15815))
+* fix extention update when not on main branch ([#15797](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15797))
+* update pickle safe filenames
+* use relative path for webui-assets css ([#15757](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15757))
+* When creating a virtual environment, upgrade pip in webui.bat/webui.sh ([#15750](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15750))
+* Fix AttributeError ([#15738](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15738))
+* use script_path for webui root in launch_utils ([#15705](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15705))
+* fix extra batch mode P Transparency ([#15664](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15664))
+* use gradio theme colors in css ([#15680](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15680))
+* Fix dragging text within prompt input ([#15657](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15657))
+* Add correct mimetype for .mjs files ([#15654](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15654))
+* QOL Items - handle metadata issues more cleanly for SD models, Loras and embeddings ([#15632](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15632))
+* replace wsl-open with wslpath and explorer.exe ([#15968](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15968))
+* Fix SDXL Inpaint ([#15976](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15976))
+* multi size grid ([#15988](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15988))
+* fix Replace preview ([#16118](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16118))
+* Possible fix of wrong scale in weight decomposition ([#16151](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16151))
+* Ensure use of python from venv on Mac and Linux ([#16116](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16116))
+* Prioritize python3.10 over python3 if both are available on Linux and Mac (with fallback) ([#16092](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16092))
+* stoping generation extras ([#16085](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16085))
+* Fix SD2 loading ([#16078](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16078), [#16079](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16079))
+* fix infotext Lora hashes for hires fix different lora ([#16062](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16062))
+* Fix sampler scheduler autocorrection warning ([#16054](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16054))
+* fix ui flashing on reloading and fast scrollong ([#16153](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16153))
+* fix upscale logic ([#16239](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16239))
+* [bug] do not break progressbar on non-job actions (add wrap_gradio_call_no_job) ([#16202](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16202))
+* fix OSError: cannot write mode P as JPEG ([#16194](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16194))
+
+### Other:
+* fix changelog #15883 -> #15882 ([#15907](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15907))
+* ReloadUI backgroundColor --background-fill-primary ([#15864](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15864))
+* Use different torch versions for Intel and ARM Macs ([#15851](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15851))
+* XYZ override rework ([#15836](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15836))
+* scroll extensions table on overflow ([#15830](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15830))
+* img2img batch upload method ([#15817](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15817))
+* chore: sync v1.8.0 packages according to changelog ([#15783](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15783))
+* Add AVIF MIME type support to mimetype definitions ([#15739](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15739))
+* Update imageviewer.js ([#15730](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15730))
+* no-referrer ([#15641](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15641))
+* .gitignore trace.json ([#15980](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15980))
+* Bump spandrel to 0.3.4 ([#16144](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16144))
+* Defunct --max-batch-count ([#16119](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16119))
+* docs: update bug_report.yml ([#16102](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16102))
+* Maintaining Project Compatibility for Python 3.9 Users Without Upgrade Requirements. ([#16088](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16088), [#16169](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16169), [#16192](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16192))
+* Update torch for ARM Macs to 2.3.1 ([#16059](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16059))
+* remove deprecated setting dont_fix_second_order_samplers_schedule ([#16061](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16061))
+* chore: fix typos ([#16060](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16060))
+* shlex.join launch args in console log ([#16170](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16170))
+* activate venv .bat ([#16231](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16231))
+* add ids to the resize tabs in img2img ([#16218](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16218))
+* update installation guide linux ([#16178](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16178))
+* Robust sysinfo ([#16173](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16173))
+* do not send image size on paste inpaint ([#16180](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16180))
+* Fix noisy DS_Store files for MacOS ([#16166](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/16166))
+
+
## 1.9.4
### Bug Fixes:
-* pin setuptools version to fix the startup error ([#15883](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15883))
+* pin setuptools version to fix the startup error ([#15882](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15882))
## 1.9.3
diff --git a/README.md b/README.md
index 4d8db9ce9f7..55d53f04f6d 100644
--- a/README.md
+++ b/README.md
@@ -98,7 +98,8 @@ A web interface for Stable Diffusion, implemented using Gradio library.
## What's different from upstream repo?
-DirectML and ZLUDA support for AMDGPUs.
+- DirectML support for every GPUs that support DirectX 12 API.
+- ZLUDA support for AMDGPUs.
- `--use-directml`: Use [DirectML](https://github.com/microsoft/DirectML) as a torch backend.
- `--use-zluda`: Use [ZLUDA](https://github.com/vosen/ZLUDA) as a torch backend.
@@ -129,7 +130,7 @@ Alternatively, use online services (like Google Colab):
1. Install [Python 3.10.6](https://www.python.org/downloads/release/python-3106/) (Newer version of Python does not support torch), checking "Add Python to PATH".
2. Install [git](https://git-scm.com/download/win).
-3. Download the stable-diffusion-webui-directml repository, for example by running `git clone https://github.com/lshqqytiger/stable-diffusion-webui-directml.git`.
+3. Download the stable-diffusion-webui-amdgpu repository, for example by running `git clone https://github.com/lshqqytiger/stable-diffusion-webui-amdgpu.git`.
4. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user.
### Automatic Installation on Linux
@@ -147,10 +148,35 @@ sudo zypper install wget git python3 libtcmalloc4 libglvnd
sudo pacman -S wget git python3
```
+If your system is very new, you need to install python3.11 or python3.10:
+
+```bash
+# Ubuntu 24.04
+sudo add-apt-repository ppa:deadsnakes/ppa
+sudo apt update
+sudo apt install python3.11
+
+# Manjaro/Arch
+sudo pacman -S yay
+yay -S python311 # do not confuse with python3.11 package
+
+# Only for 3.11
+# Then set up env variable in launch script
+export python_cmd="python3.11"
+# or in webui-user.sh
+python_cmd="python3.11"
+```
+
2. Navigate to the directory you would like the webui to be installed and execute the following command:
```bash
-wget -q https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh
+wget -q https://raw.githubusercontent.com/lshqqytiger/stable-diffusion-webui-amdgpu/master/webui.sh
+```
+
+Or just clone the repo wherever you want:
+
+```bash
+git clone https://github.com/lshqqytiger/stable-diffusion-webui-amdgpu
```
3. Run `webui.sh`.
@@ -174,7 +200,7 @@ For the purposes of getting Google and other search engines to crawl the wiki, h
Licenses for borrowed code can be found in `Settings -> Licenses` screen, and also in `html/licenses.html` file.
-- Stable Diffusion - https://github.com/Stability-AI/stablediffusion, https://github.com/CompVis/taming-transformers
+- Stable Diffusion - https://github.com/Stability-AI/stablediffusion, https://github.com/CompVis/taming-transformers, https://github.com/mcmonkey4eva/sd3-ref
- k-diffusion - https://github.com/crowsonkb/k-diffusion.git
- Spandrel - https://github.com/chaiNNer-org/spandrel implementing
- GFPGAN - https://github.com/TencentARC/GFPGAN.git
diff --git a/configs/alt-diffusion-inference.yaml b/configs/alt-diffusion-inference.yaml
index cfbee72d71b..4944ab5c8dc 100644
--- a/configs/alt-diffusion-inference.yaml
+++ b/configs/alt-diffusion-inference.yaml
@@ -40,7 +40,7 @@ model:
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
- use_checkpoint: True
+ use_checkpoint: False
legacy: False
first_stage_config:
diff --git a/configs/alt-diffusion-m18-inference.yaml b/configs/alt-diffusion-m18-inference.yaml
index 41a031d55f0..c60dca8c7b3 100644
--- a/configs/alt-diffusion-m18-inference.yaml
+++ b/configs/alt-diffusion-m18-inference.yaml
@@ -41,7 +41,7 @@ model:
use_linear_in_transformer: True
transformer_depth: 1
context_dim: 1024
- use_checkpoint: True
+ use_checkpoint: False
legacy: False
first_stage_config:
diff --git a/configs/instruct-pix2pix.yaml b/configs/instruct-pix2pix.yaml
index 4e896879dd7..564e50ae246 100644
--- a/configs/instruct-pix2pix.yaml
+++ b/configs/instruct-pix2pix.yaml
@@ -45,7 +45,7 @@ model:
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
- use_checkpoint: True
+ use_checkpoint: False
legacy: False
first_stage_config:
diff --git a/configs/sd3-inference.yaml b/configs/sd3-inference.yaml
new file mode 100644
index 00000000000..bccb69d2ea3
--- /dev/null
+++ b/configs/sd3-inference.yaml
@@ -0,0 +1,5 @@
+model:
+ target: modules.models.sd3.sd3_model.SD3Inferencer
+ params:
+ shift: 3
+ state_dict: null
diff --git a/configs/sd_xl_inpaint.yaml b/configs/sd_xl_inpaint.yaml
index 3bad372186f..f40f45e3316 100644
--- a/configs/sd_xl_inpaint.yaml
+++ b/configs/sd_xl_inpaint.yaml
@@ -21,7 +21,7 @@ model:
params:
adm_in_channels: 2816
num_classes: sequential
- use_checkpoint: True
+ use_checkpoint: False
in_channels: 9
out_channels: 4
model_channels: 320
diff --git a/configs/v1-inference.yaml b/configs/v1-inference.yaml
index d4effe569e8..25c4d9ed066 100644
--- a/configs/v1-inference.yaml
+++ b/configs/v1-inference.yaml
@@ -40,7 +40,7 @@ model:
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
- use_checkpoint: True
+ use_checkpoint: False
legacy: False
first_stage_config:
diff --git a/configs/v1-inpainting-inference.yaml b/configs/v1-inpainting-inference.yaml
index f9eec37d24b..68c199f99c3 100644
--- a/configs/v1-inpainting-inference.yaml
+++ b/configs/v1-inpainting-inference.yaml
@@ -40,7 +40,7 @@ model:
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
- use_checkpoint: True
+ use_checkpoint: False
legacy: False
first_stage_config:
diff --git a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
index 9a1e0778f24..51ab1821282 100644
--- a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
+++ b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
@@ -572,7 +572,7 @@ def delta_border(self, h, w):
:param h: height
:param w: width
:return: normalized distance to image border,
- wtith min distance = 0 at border and max dist = 0.5 at image center
+ with min distance = 0 at border and max dist = 0.5 at image center
"""
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
arr = self.meshgrid(h, w) / lower_right_corner
diff --git a/extensions-builtin/Lora/extra_networks_lora.py b/extensions-builtin/Lora/extra_networks_lora.py
index 005ff32cbe3..17a620f77e3 100644
--- a/extensions-builtin/Lora/extra_networks_lora.py
+++ b/extensions-builtin/Lora/extra_networks_lora.py
@@ -9,6 +9,8 @@ def __init__(self):
self.errors = {}
"""mapping of network names to the number of errors the network had during operation"""
+ remove_symbols = str.maketrans('', '', ":,")
+
def activate(self, p, params_list):
additional = shared.opts.sd_lora
@@ -43,22 +45,15 @@ def activate(self, p, params_list):
networks.load_networks(names, te_multipliers, unet_multipliers, dyn_dims)
if shared.opts.lora_add_hashes_to_infotext:
- network_hashes = []
- for item in networks.loaded_networks:
- shorthash = item.network_on_disk.shorthash
- if not shorthash:
- continue
-
- alias = item.mentioned_name
- if not alias:
- continue
+ if not getattr(p, "is_hr_pass", False) or not hasattr(p, "lora_hashes"):
+ p.lora_hashes = {}
- alias = alias.replace(":", "").replace(",", "")
-
- network_hashes.append(f"{alias}: {shorthash}")
+ for item in networks.loaded_networks:
+ if item.network_on_disk.shorthash and item.mentioned_name:
+ p.lora_hashes[item.mentioned_name.translate(self.remove_symbols)] = item.network_on_disk.shorthash
- if network_hashes:
- p.extra_generation_params["Lora hashes"] = ", ".join(network_hashes)
+ if p.lora_hashes:
+ p.extra_generation_params["Lora hashes"] = ', '.join(f'{k}: {v}' for k, v in p.lora_hashes.items())
def deactivate(self, p):
if self.errors:
diff --git a/extensions-builtin/Lora/network.py b/extensions-builtin/Lora/network.py
index 20f8df3d4a8..98ff367fd8a 100644
--- a/extensions-builtin/Lora/network.py
+++ b/extensions-builtin/Lora/network.py
@@ -7,6 +7,7 @@
import torch.nn.functional as F
from modules import sd_models, cache, errors, hashes, shared
+import modules.models.sd3.mmdit
NetworkWeights = namedtuple('NetworkWeights', ['network_key', 'sd_key', 'w', 'sd_module'])
@@ -114,7 +115,10 @@ def __init__(self, net: Network, weights: NetworkWeights):
self.sd_key = weights.sd_key
self.sd_module = weights.sd_module
- if hasattr(self.sd_module, 'weight'):
+ if isinstance(self.sd_module, modules.models.sd3.mmdit.QkvLinear):
+ s = self.sd_module.weight.shape
+ self.shape = (s[0] // 3, s[1])
+ elif hasattr(self.sd_module, 'weight'):
self.shape = self.sd_module.weight.shape
elif isinstance(self.sd_module, nn.MultiheadAttention):
# For now, only self-attn use Pytorch's MHA
@@ -204,10 +208,12 @@ def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None):
if ex_bias is not None:
ex_bias = ex_bias * self.multiplier()
+ updown = updown * self.calc_scale()
+
if self.dora_scale is not None:
updown = self.apply_weight_decompose(updown, orig_weight)
- return updown * self.calc_scale() * self.multiplier(), ex_bias
+ return updown * self.multiplier(), ex_bias
def calc_updown(self, target):
raise NotImplementedError()
diff --git a/extensions-builtin/Lora/network_lora.py b/extensions-builtin/Lora/network_lora.py
index 4cc4029510f..a7a088949ea 100644
--- a/extensions-builtin/Lora/network_lora.py
+++ b/extensions-builtin/Lora/network_lora.py
@@ -1,6 +1,7 @@
import torch
import lyco_helpers
+import modules.models.sd3.mmdit
import network
from modules import devices
@@ -10,6 +11,13 @@ def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["lora_up.weight", "lora_down.weight"]):
return NetworkModuleLora(net, weights)
+ if all(x in weights.w for x in ["lora_A.weight", "lora_B.weight"]):
+ w = weights.w.copy()
+ weights.w.clear()
+ weights.w.update({"lora_up.weight": w["lora_B.weight"], "lora_down.weight": w["lora_A.weight"]})
+
+ return NetworkModuleLora(net, weights)
+
return None
@@ -29,7 +37,7 @@ def create_module(self, weights, key, none_ok=False):
if weight is None and none_ok:
return None
- is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear, torch.nn.MultiheadAttention]
+ is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear, torch.nn.MultiheadAttention, modules.models.sd3.mmdit.QkvLinear]
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
if is_linear:
diff --git a/extensions-builtin/Lora/networks.py b/extensions-builtin/Lora/networks.py
index 42b14dc239d..67f9abe2a37 100644
--- a/extensions-builtin/Lora/networks.py
+++ b/extensions-builtin/Lora/networks.py
@@ -1,3 +1,4 @@
+from __future__ import annotations
import gradio as gr
import logging
import os
@@ -19,6 +20,7 @@
from modules import shared, devices, sd_models, errors, scripts, sd_hijack
import modules.textual_inversion.textual_inversion as textual_inversion
+import modules.models.sd3.mmdit
from lora_logger import logger
@@ -130,7 +132,9 @@ def assign_network_names_to_compvis_modules(sd_model):
network_layer_mapping[network_name] = module
module.network_layer_name = network_name
else:
- for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules():
+ cond_stage_model = getattr(shared.sd_model.cond_stage_model, 'wrapped', shared.sd_model.cond_stage_model)
+
+ for name, module in cond_stage_model.named_modules():
network_name = name.replace(".", "_")
network_layer_mapping[network_name] = module
module.network_layer_name = network_name
@@ -143,6 +147,14 @@ def assign_network_names_to_compvis_modules(sd_model):
sd_model.network_layer_mapping = network_layer_mapping
+class BundledTIHash(str):
+ def __init__(self, hash_str):
+ self.hash = hash_str
+
+ def __str__(self):
+ return self.hash if shared.opts.lora_bundled_ti_to_infotext else ''
+
+
def load_network(name, network_on_disk):
net = network.Network(name, network_on_disk)
net.mtime = os.path.getmtime(network_on_disk.filename)
@@ -155,12 +167,26 @@ def load_network(name, network_on_disk):
keys_failed_to_match = {}
is_sd2 = 'model_transformer_resblocks' in shared.sd_model.network_layer_mapping
+ if hasattr(shared.sd_model, 'diffusers_weight_map'):
+ diffusers_weight_map = shared.sd_model.diffusers_weight_map
+ elif hasattr(shared.sd_model, 'diffusers_weight_mapping'):
+ diffusers_weight_map = {}
+ for k, v in shared.sd_model.diffusers_weight_mapping():
+ diffusers_weight_map[k] = v
+ shared.sd_model.diffusers_weight_map = diffusers_weight_map
+ else:
+ diffusers_weight_map = None
matched_networks = {}
bundle_embeddings = {}
for key_network, weight in sd.items():
- key_network_without_network_parts, _, network_part = key_network.partition(".")
+
+ if diffusers_weight_map:
+ key_network_without_network_parts, network_name, network_weight = key_network.rsplit(".", 2)
+ network_part = network_name + '.' + network_weight
+ else:
+ key_network_without_network_parts, _, network_part = key_network.partition(".")
if key_network_without_network_parts == "bundle_emb":
emb_name, vec_name = network_part.split(".", 1)
@@ -172,7 +198,11 @@ def load_network(name, network_on_disk):
emb_dict[vec_name] = weight
bundle_embeddings[emb_name] = emb_dict
- key = convert_diffusers_name_to_compvis(key_network_without_network_parts, is_sd2)
+ if diffusers_weight_map:
+ key = diffusers_weight_map.get(key_network_without_network_parts, key_network_without_network_parts)
+ else:
+ key = convert_diffusers_name_to_compvis(key_network_without_network_parts, is_sd2)
+
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
if sd_module is None:
@@ -229,6 +259,7 @@ def load_network(name, network_on_disk):
for emb_name, data in bundle_embeddings.items():
embedding = textual_inversion.create_embedding_from_data(data, emb_name, filename=network_on_disk.filename + "/" + emb_name)
embedding.loaded = None
+ embedding.shorthash = BundledTIHash(name)
embeddings[emb_name] = embedding
net.bundle_embeddings = embeddings
@@ -260,6 +291,16 @@ def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=No
loaded_networks.clear()
+ unavailable_networks = []
+ for name in names:
+ if name.lower() in forbidden_network_aliases and available_networks.get(name) is None:
+ unavailable_networks.append(name)
+ elif available_network_aliases.get(name) is None:
+ unavailable_networks.append(name)
+
+ if unavailable_networks:
+ update_available_networks_by_names(unavailable_networks)
+
networks_on_disk = [available_networks.get(name, None) if name.lower() in forbidden_network_aliases else available_network_aliases.get(name, None) for name in names]
if any(x is None for x in networks_on_disk):
list_available_networks()
@@ -325,6 +366,28 @@ def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=No
purge_networks_from_memory()
+def allowed_layer_without_weight(layer):
+ if isinstance(layer, torch.nn.LayerNorm) and not layer.elementwise_affine:
+ return True
+
+ return False
+
+
+def store_weights_backup(weight):
+ if weight is None:
+ return None
+
+ return weight.to(devices.cpu, copy=True)
+
+
+def restore_weights_backup(obj, field, weight):
+ if weight is None:
+ setattr(obj, field, None)
+ return
+
+ getattr(obj, field).copy_(weight)
+
+
def network_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention]):
weights_backup = getattr(self, "network_weights_backup", None)
bias_backup = getattr(self, "network_bias_backup", None)
@@ -334,21 +397,15 @@ def network_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Li
if weights_backup is not None:
if isinstance(self, torch.nn.MultiheadAttention):
- self.in_proj_weight.copy_(weights_backup[0])
- self.out_proj.weight.copy_(weights_backup[1])
+ restore_weights_backup(self, 'in_proj_weight', weights_backup[0])
+ restore_weights_backup(self.out_proj, 'weight', weights_backup[1])
else:
- self.weight.copy_(weights_backup)
+ restore_weights_backup(self, 'weight', weights_backup)
- if bias_backup is not None:
- if isinstance(self, torch.nn.MultiheadAttention):
- self.out_proj.bias.copy_(bias_backup)
- else:
- self.bias.copy_(bias_backup)
+ if isinstance(self, torch.nn.MultiheadAttention):
+ restore_weights_backup(self.out_proj, 'bias', bias_backup)
else:
- if isinstance(self, torch.nn.MultiheadAttention):
- self.out_proj.bias = None
- else:
- self.bias = None
+ restore_weights_backup(self, 'bias', bias_backup)
def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention]):
@@ -367,24 +424,30 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn
weights_backup = getattr(self, "network_weights_backup", None)
if weights_backup is None and wanted_names != ():
- if current_names != ():
- raise RuntimeError("no backup weights found and current weights are not unchanged")
+ if current_names != () and not allowed_layer_without_weight(self):
+ raise RuntimeError(f"{network_layer_name} - no backup weights found and current weights are not unchanged")
if isinstance(self, torch.nn.MultiheadAttention):
- weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True))
+ weights_backup = (store_weights_backup(self.in_proj_weight), store_weights_backup(self.out_proj.weight))
else:
- weights_backup = self.weight.to(devices.cpu, copy=True)
+ weights_backup = store_weights_backup(self.weight)
self.network_weights_backup = weights_backup
bias_backup = getattr(self, "network_bias_backup", None)
- if bias_backup is None:
+ if bias_backup is None and wanted_names != ():
if isinstance(self, torch.nn.MultiheadAttention) and self.out_proj.bias is not None:
- bias_backup = self.out_proj.bias.to(devices.cpu, copy=True)
+ bias_backup = store_weights_backup(self.out_proj.bias)
elif getattr(self, 'bias', None) is not None:
- bias_backup = self.bias.to(devices.cpu, copy=True)
+ bias_backup = store_weights_backup(self.bias)
else:
bias_backup = None
+
+ # Unlike weight which always has value, some modules don't have bias.
+ # Only report if bias is not None and current bias are not unchanged.
+ if bias_backup is not None and current_names != ():
+ raise RuntimeError("no backup bias found and current bias are not unchanged")
+
self.network_bias_backup = bias_backup
if current_names != wanted_names:
@@ -392,7 +455,7 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn
for net in loaded_networks:
module = net.modules.get(network_layer_name, None)
- if module is not None and hasattr(self, 'weight'):
+ if module is not None and hasattr(self, 'weight') and not isinstance(module, modules.models.sd3.mmdit.QkvLinear):
try:
with torch.no_grad():
if getattr(self, 'fp16_weight', None) is None:
@@ -452,6 +515,24 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn
continue
+ if isinstance(self, modules.models.sd3.mmdit.QkvLinear) and module_q and module_k and module_v:
+ try:
+ with torch.no_grad():
+ # Send "real" orig_weight into MHA's lora module
+ qw, kw, vw = self.weight.chunk(3, 0)
+ updown_q, _ = module_q.calc_updown(qw)
+ updown_k, _ = module_k.calc_updown(kw)
+ updown_v, _ = module_v.calc_updown(vw)
+ del qw, kw, vw
+ updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
+ self.weight += updown_qkv
+
+ except RuntimeError as e:
+ logging.debug(f"Network {net.name} layer {network_layer_name}: {e}")
+ extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
+
+ continue
+
if module is None:
continue
@@ -566,22 +647,16 @@ def network_MultiheadAttention_load_state_dict(self, *args, **kwargs):
return originals.MultiheadAttention_load_state_dict(self, *args, **kwargs)
-def list_available_networks():
- available_networks.clear()
- available_network_aliases.clear()
- forbidden_network_aliases.clear()
- available_network_hash_lookup.clear()
- forbidden_network_aliases.update({"none": 1, "Addams": 1})
-
- os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
-
+def process_network_files(names: list[str] | None = None):
candidates = list(shared.walk_files(shared.cmd_opts.lora_dir, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
candidates += list(shared.walk_files(shared.cmd_opts.lyco_dir_backcompat, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
for filename in candidates:
if os.path.isdir(filename):
continue
-
name = os.path.splitext(os.path.basename(filename))[0]
+ # if names is provided, only load networks with names in the list
+ if names and name not in names:
+ continue
try:
entry = network.NetworkOnDisk(name, filename)
except OSError: # should catch FileNotFoundError and PermissionError etc.
@@ -597,6 +672,22 @@ def list_available_networks():
available_network_aliases[entry.alias] = entry
+def update_available_networks_by_names(names: list[str]):
+ process_network_files(names)
+
+
+def list_available_networks():
+ available_networks.clear()
+ available_network_aliases.clear()
+ forbidden_network_aliases.clear()
+ available_network_hash_lookup.clear()
+ forbidden_network_aliases.update({"none": 1, "Addams": 1})
+
+ os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
+
+ process_network_files()
+
+
re_network_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)")
diff --git a/extensions-builtin/Lora/scripts/lora_script.py b/extensions-builtin/Lora/scripts/lora_script.py
index 1518f7e5c89..d3ea369ae26 100644
--- a/extensions-builtin/Lora/scripts/lora_script.py
+++ b/extensions-builtin/Lora/scripts/lora_script.py
@@ -36,6 +36,7 @@ def before_ui():
"sd_lora": shared.OptionInfo("None", "Add network to prompt", gr.Dropdown, lambda: {"choices": ["None", *networks.available_networks]}, refresh=networks.list_available_networks),
"lora_preferred_name": shared.OptionInfo("Alias from file", "When adding to prompt, refer to Lora by", gr.Radio, {"choices": ["Alias from file", "Filename"]}),
"lora_add_hashes_to_infotext": shared.OptionInfo(True, "Add Lora hashes to infotext"),
+ "lora_bundled_ti_to_infotext": shared.OptionInfo(True, "Add Lora name as TI hashes for bundled Textual Inversion").info('"Add Textual Inversion hashes to infotext" needs to be enabled'),
"lora_show_all": shared.OptionInfo(False, "Always show all networks on the Lora page").info("otherwise, those detected as for incompatible version of Stable Diffusion will be hidden"),
"lora_hide_unknown_for_versions": shared.OptionInfo([], "Hide networks of unknown versions for model versions", gr.CheckboxGroup, {"choices": ["SD1", "SD2", "SDXL"]}),
"lora_in_memory_limit": shared.OptionInfo(0, "Number of Lora networks to keep cached in memory", gr.Number, {"precision": 0}),
diff --git a/extensions-builtin/Lora/ui_edit_user_metadata.py b/extensions-builtin/Lora/ui_edit_user_metadata.py
index 7a07a544e28..b6c4d1c6acb 100644
--- a/extensions-builtin/Lora/ui_edit_user_metadata.py
+++ b/extensions-builtin/Lora/ui_edit_user_metadata.py
@@ -21,10 +21,12 @@ def is_non_comma_tagset(tags):
def build_tags(metadata):
tags = {}
- for _, tags_dict in metadata.get("ss_tag_frequency", {}).items():
- for tag, tag_count in tags_dict.items():
- tag = tag.strip()
- tags[tag] = tags.get(tag, 0) + int(tag_count)
+ ss_tag_frequency = metadata.get("ss_tag_frequency", {})
+ if ss_tag_frequency is not None and hasattr(ss_tag_frequency, 'items'):
+ for _, tags_dict in ss_tag_frequency.items():
+ for tag, tag_count in tags_dict.items():
+ tag = tag.strip()
+ tags[tag] = tags.get(tag, 0) + int(tag_count)
if tags and is_non_comma_tagset(tags):
new_tags = {}
diff --git a/extensions-builtin/Lora/ui_extra_networks_lora.py b/extensions-builtin/Lora/ui_extra_networks_lora.py
index b627f7dc29d..3e34d69dca4 100644
--- a/extensions-builtin/Lora/ui_extra_networks_lora.py
+++ b/extensions-builtin/Lora/ui_extra_networks_lora.py
@@ -60,7 +60,7 @@ def create_item(self, name, index=None, enable_filter=True):
else:
sd_version = lora_on_disk.sd_version
- if shared.opts.lora_show_all or not enable_filter:
+ if shared.opts.lora_show_all or not enable_filter or not shared.sd_model:
pass
elif sd_version == network.SdVersion.Unknown:
model_version = network.SdVersion.SDXL if shared.sd_model.is_sdxl else network.SdVersion.SD2 if shared.sd_model.is_sd2 else network.SdVersion.SD1
diff --git a/extensions-builtin/hypertile/scripts/hypertile_script.py b/extensions-builtin/hypertile/scripts/hypertile_script.py
index 395d584b605..59e7f9907e5 100644
--- a/extensions-builtin/hypertile/scripts/hypertile_script.py
+++ b/extensions-builtin/hypertile/scripts/hypertile_script.py
@@ -1,6 +1,5 @@
import hypertile
from modules import scripts, script_callbacks, shared
-from scripts.hypertile_xyz import add_axis_options
class ScriptHypertile(scripts.Script):
@@ -93,7 +92,6 @@ def on_ui_settings():
"hypertile_max_depth_unet": shared.OptionInfo(3, "Hypertile U-Net max depth", gr.Slider, {"minimum": 0, "maximum": 3, "step": 1}, infotext="Hypertile U-Net max depth").info("larger = more neural network layers affected; minor effect on performance"),
"hypertile_max_tile_unet": shared.OptionInfo(256, "Hypertile U-Net max tile size", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}, infotext="Hypertile U-Net max tile size").info("larger = worse performance"),
"hypertile_swap_size_unet": shared.OptionInfo(3, "Hypertile U-Net swap size", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}, infotext="Hypertile U-Net swap size"),
-
"hypertile_enable_vae": shared.OptionInfo(False, "Enable Hypertile VAE", infotext="Hypertile VAE").info("minimal change in the generated picture"),
"hypertile_max_depth_vae": shared.OptionInfo(3, "Hypertile VAE max depth", gr.Slider, {"minimum": 0, "maximum": 3, "step": 1}, infotext="Hypertile VAE max depth"),
"hypertile_max_tile_vae": shared.OptionInfo(128, "Hypertile VAE max tile size", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}, infotext="Hypertile VAE max tile size"),
@@ -105,5 +103,20 @@ def on_ui_settings():
shared.opts.add_option(name, opt)
+def add_axis_options():
+ xyz_grid = [x for x in scripts.scripts_data if x.script_class.__module__ == "xyz_grid.py"][0].module
+ xyz_grid.axis_options.extend([
+ xyz_grid.AxisOption("[Hypertile] Unet First pass Enabled", str, xyz_grid.apply_override('hypertile_enable_unet', boolean=True), choices=xyz_grid.boolean_choice(reverse=True)),
+ xyz_grid.AxisOption("[Hypertile] Unet Second pass Enabled", str, xyz_grid.apply_override('hypertile_enable_unet_secondpass', boolean=True), choices=xyz_grid.boolean_choice(reverse=True)),
+ xyz_grid.AxisOption("[Hypertile] Unet Max Depth", int, xyz_grid.apply_override("hypertile_max_depth_unet"), confirm=xyz_grid.confirm_range(0, 3, '[Hypertile] Unet Max Depth'), choices=lambda: [str(x) for x in range(4)]),
+ xyz_grid.AxisOption("[Hypertile] Unet Max Tile Size", int, xyz_grid.apply_override("hypertile_max_tile_unet"), confirm=xyz_grid.confirm_range(0, 512, '[Hypertile] Unet Max Tile Size')),
+ xyz_grid.AxisOption("[Hypertile] Unet Swap Size", int, xyz_grid.apply_override("hypertile_swap_size_unet"), confirm=xyz_grid.confirm_range(0, 64, '[Hypertile] Unet Swap Size')),
+ xyz_grid.AxisOption("[Hypertile] VAE Enabled", str, xyz_grid.apply_override('hypertile_enable_vae', boolean=True), choices=xyz_grid.boolean_choice(reverse=True)),
+ xyz_grid.AxisOption("[Hypertile] VAE Max Depth", int, xyz_grid.apply_override("hypertile_max_depth_vae"), confirm=xyz_grid.confirm_range(0, 3, '[Hypertile] VAE Max Depth'), choices=lambda: [str(x) for x in range(4)]),
+ xyz_grid.AxisOption("[Hypertile] VAE Max Tile Size", int, xyz_grid.apply_override("hypertile_max_tile_vae"), confirm=xyz_grid.confirm_range(0, 512, '[Hypertile] VAE Max Tile Size')),
+ xyz_grid.AxisOption("[Hypertile] VAE Swap Size", int, xyz_grid.apply_override("hypertile_swap_size_vae"), confirm=xyz_grid.confirm_range(0, 64, '[Hypertile] VAE Swap Size')),
+ ])
+
+
script_callbacks.on_ui_settings(on_ui_settings)
script_callbacks.on_before_ui(add_axis_options)
diff --git a/extensions-builtin/hypertile/scripts/hypertile_xyz.py b/extensions-builtin/hypertile/scripts/hypertile_xyz.py
deleted file mode 100644
index 9e96ae3c527..00000000000
--- a/extensions-builtin/hypertile/scripts/hypertile_xyz.py
+++ /dev/null
@@ -1,51 +0,0 @@
-from modules import scripts
-from modules.shared import opts
-
-xyz_grid = [x for x in scripts.scripts_data if x.script_class.__module__ == "xyz_grid.py"][0].module
-
-def int_applier(value_name:str, min_range:int = -1, max_range:int = -1):
- """
- Returns a function that applies the given value to the given value_name in opts.data.
- """
- def validate(value_name:str, value:str):
- value = int(value)
- # validate value
- if not min_range == -1:
- assert value >= min_range, f"Value {value} for {value_name} must be greater than or equal to {min_range}"
- if not max_range == -1:
- assert value <= max_range, f"Value {value} for {value_name} must be less than or equal to {max_range}"
- def apply_int(p, x, xs):
- validate(value_name, x)
- opts.data[value_name] = int(x)
- return apply_int
-
-def bool_applier(value_name:str):
- """
- Returns a function that applies the given value to the given value_name in opts.data.
- """
- def validate(value_name:str, value:str):
- assert value.lower() in ["true", "false"], f"Value {value} for {value_name} must be either true or false"
- def apply_bool(p, x, xs):
- validate(value_name, x)
- value_boolean = x.lower() == "true"
- opts.data[value_name] = value_boolean
- return apply_bool
-
-def add_axis_options():
- extra_axis_options = [
- xyz_grid.AxisOption("[Hypertile] Unet First pass Enabled", str, bool_applier("hypertile_enable_unet"), choices=xyz_grid.boolean_choice(reverse=True)),
- xyz_grid.AxisOption("[Hypertile] Unet Second pass Enabled", str, bool_applier("hypertile_enable_unet_secondpass"), choices=xyz_grid.boolean_choice(reverse=True)),
- xyz_grid.AxisOption("[Hypertile] Unet Max Depth", int, int_applier("hypertile_max_depth_unet", 0, 3), choices=lambda: [str(x) for x in range(4)]),
- xyz_grid.AxisOption("[Hypertile] Unet Max Tile Size", int, int_applier("hypertile_max_tile_unet", 0, 512)),
- xyz_grid.AxisOption("[Hypertile] Unet Swap Size", int, int_applier("hypertile_swap_size_unet", 0, 64)),
- xyz_grid.AxisOption("[Hypertile] VAE Enabled", str, bool_applier("hypertile_enable_vae"), choices=xyz_grid.boolean_choice(reverse=True)),
- xyz_grid.AxisOption("[Hypertile] VAE Max Depth", int, int_applier("hypertile_max_depth_vae", 0, 3), choices=lambda: [str(x) for x in range(4)]),
- xyz_grid.AxisOption("[Hypertile] VAE Max Tile Size", int, int_applier("hypertile_max_tile_vae", 0, 512)),
- xyz_grid.AxisOption("[Hypertile] VAE Swap Size", int, int_applier("hypertile_swap_size_vae", 0, 64)),
- ]
- set_a = {opt.label for opt in xyz_grid.axis_options}
- set_b = {opt.label for opt in extra_axis_options}
- if set_a.intersection(set_b):
- return
-
- xyz_grid.axis_options.extend(extra_axis_options)
diff --git a/extensions-builtin/soft-inpainting/scripts/soft_inpainting.py b/extensions-builtin/soft-inpainting/scripts/soft_inpainting.py
index f56e1e2266d..0e629963af4 100644
--- a/extensions-builtin/soft-inpainting/scripts/soft_inpainting.py
+++ b/extensions-builtin/soft-inpainting/scripts/soft_inpainting.py
@@ -3,6 +3,7 @@
import math
from modules.ui_components import InputAccordion
import modules.scripts as scripts
+from modules.torch_utils import float64
class SoftInpaintingSettings:
@@ -79,13 +80,11 @@ def latent_blend(settings, a, b, t):
# Calculate the magnitude of the interpolated vectors. (We will remove this magnitude.)
# 64-bit operations are used here to allow large exponents.
- current_magnitude = torch.norm(image_interp, p=2, dim=1, keepdim=True).to(torch.float64).add_(0.00001)
+ current_magnitude = torch.norm(image_interp, p=2, dim=1, keepdim=True).to(float64(image_interp)).add_(0.00001)
# Interpolate the powered magnitudes, then un-power them (bring them back to a power of 1).
- a_magnitude = torch.norm(a, p=2, dim=1, keepdim=True).to(torch.float64).pow_(
- settings.inpaint_detail_preservation) * one_minus_t3
- b_magnitude = torch.norm(b, p=2, dim=1, keepdim=True).to(torch.float64).pow_(
- settings.inpaint_detail_preservation) * t3
+ a_magnitude = torch.norm(a, p=2, dim=1, keepdim=True).to(float64(a)).pow_(settings.inpaint_detail_preservation) * one_minus_t3
+ b_magnitude = torch.norm(b, p=2, dim=1, keepdim=True).to(float64(b)).pow_(settings.inpaint_detail_preservation) * t3
desired_magnitude = a_magnitude
desired_magnitude.add_(b_magnitude).pow_(1 / settings.inpaint_detail_preservation)
del a_magnitude, b_magnitude, t3, one_minus_t3
diff --git a/javascript/contextMenus.js b/javascript/contextMenus.js
index ccae242f2b6..e01fd67e80e 100644
--- a/javascript/contextMenus.js
+++ b/javascript/contextMenus.js
@@ -8,9 +8,6 @@ var contextMenuInit = function() {
};
function showContextMenu(event, element, menuEntries) {
- let posx = event.clientX + document.body.scrollLeft + document.documentElement.scrollLeft;
- let posy = event.clientY + document.body.scrollTop + document.documentElement.scrollTop;
-
let oldMenu = gradioApp().querySelector('#context-menu');
if (oldMenu) {
oldMenu.remove();
@@ -23,10 +20,8 @@ var contextMenuInit = function() {
contextMenu.style.background = baseStyle.background;
contextMenu.style.color = baseStyle.color;
contextMenu.style.fontFamily = baseStyle.fontFamily;
- contextMenu.style.top = posy + 'px';
- contextMenu.style.left = posx + 'px';
-
-
+ contextMenu.style.top = event.pageY + 'px';
+ contextMenu.style.left = event.pageX + 'px';
const contextMenuList = document.createElement('ul');
contextMenuList.className = 'context-menu-items';
@@ -43,21 +38,6 @@ var contextMenuInit = function() {
});
gradioApp().appendChild(contextMenu);
-
- let menuWidth = contextMenu.offsetWidth + 4;
- let menuHeight = contextMenu.offsetHeight + 4;
-
- let windowWidth = window.innerWidth;
- let windowHeight = window.innerHeight;
-
- if ((windowWidth - posx) < menuWidth) {
- contextMenu.style.left = windowWidth - menuWidth + "px";
- }
-
- if ((windowHeight - posy) < menuHeight) {
- contextMenu.style.top = windowHeight - menuHeight + "px";
- }
-
}
function appendContextMenuOption(targetElementSelector, entryName, entryFunction) {
@@ -107,16 +87,23 @@ var contextMenuInit = function() {
oldMenu.remove();
}
});
- gradioApp().addEventListener("contextmenu", function(e) {
- let oldMenu = gradioApp().querySelector('#context-menu');
- if (oldMenu) {
- oldMenu.remove();
- }
- menuSpecs.forEach(function(v, k) {
- if (e.composedPath()[0].matches(k)) {
- showContextMenu(e, e.composedPath()[0], v);
- e.preventDefault();
+ ['contextmenu', 'touchstart'].forEach((eventType) => {
+ gradioApp().addEventListener(eventType, function(e) {
+ let ev = e;
+ if (eventType.startsWith('touch')) {
+ if (e.touches.length !== 2) return;
+ ev = e.touches[0];
+ }
+ let oldMenu = gradioApp().querySelector('#context-menu');
+ if (oldMenu) {
+ oldMenu.remove();
}
+ menuSpecs.forEach(function(v, k) {
+ if (e.composedPath()[0].matches(k)) {
+ showContextMenu(ev, e.composedPath()[0], v);
+ e.preventDefault();
+ }
+ });
});
});
eventListenerApplied = true;
diff --git a/javascript/dragdrop.js b/javascript/dragdrop.js
index 0c018356419..882562d7367 100644
--- a/javascript/dragdrop.js
+++ b/javascript/dragdrop.js
@@ -56,6 +56,15 @@ function eventHasFiles(e) {
return false;
}
+function isURL(url) {
+ try {
+ const _ = new URL(url);
+ return true;
+ } catch {
+ return false;
+ }
+}
+
function dragDropTargetIsPrompt(target) {
if (target?.placeholder && target?.placeholder.indexOf("Prompt") >= 0) return true;
if (target?.parentNode?.parentNode?.className?.indexOf("prompt") > 0) return true;
@@ -77,7 +86,7 @@ window.document.addEventListener('dragover', e => {
window.document.addEventListener('drop', async e => {
const target = e.composedPath()[0];
const url = e.dataTransfer.getData('text/uri-list') || e.dataTransfer.getData('text/plain');
- if (!eventHasFiles(e) && !url) return;
+ if (!eventHasFiles(e) && !isURL(url)) return;
if (dragDropTargetIsPrompt(target)) {
e.stopPropagation();
diff --git a/javascript/imageviewer.js b/javascript/imageviewer.js
index d4d4f016ddd..9b23f4700b3 100644
--- a/javascript/imageviewer.js
+++ b/javascript/imageviewer.js
@@ -6,6 +6,8 @@ function closeModal() {
function showModal(event) {
const source = event.target || event.srcElement;
const modalImage = gradioApp().getElementById("modalImage");
+ const modalToggleLivePreviewBtn = gradioApp().getElementById("modal_toggle_live_preview");
+ modalToggleLivePreviewBtn.innerHTML = opts.js_live_preview_in_modal_lightbox ? "🗇" : "🗆";
const lb = gradioApp().getElementById("lightboxModal");
modalImage.src = source.src;
if (modalImage.style.display === 'none') {
@@ -51,14 +53,7 @@ function modalImageSwitch(offset) {
var galleryButtons = all_gallery_buttons();
if (galleryButtons.length > 1) {
- var currentButton = selected_gallery_button();
-
- var result = -1;
- galleryButtons.forEach(function(v, i) {
- if (v == currentButton) {
- result = i;
- }
- });
+ var result = selected_gallery_index();
if (result != -1) {
var nextButton = galleryButtons[negmod((result + offset), galleryButtons.length)];
@@ -159,6 +154,13 @@ function modalZoomToggle(event) {
event.stopPropagation();
}
+function modalLivePreviewToggle(event) {
+ const modalToggleLivePreview = gradioApp().getElementById("modal_toggle_live_preview");
+ opts.js_live_preview_in_modal_lightbox = !opts.js_live_preview_in_modal_lightbox;
+ modalToggleLivePreview.innerHTML = opts.js_live_preview_in_modal_lightbox ? "🗇" : "🗆";
+ event.stopPropagation();
+}
+
function modalTileImageToggle(event) {
const modalImage = gradioApp().getElementById("modalImage");
const modal = gradioApp().getElementById("lightboxModal");
@@ -216,6 +218,14 @@ document.addEventListener("DOMContentLoaded", function() {
modalSave.title = "Save Image(s)";
modalControls.appendChild(modalSave);
+ const modalToggleLivePreview = document.createElement('span');
+ modalToggleLivePreview.className = 'modalToggleLivePreview cursor';
+ modalToggleLivePreview.id = "modal_toggle_live_preview";
+ modalToggleLivePreview.innerHTML = "🗆";
+ modalToggleLivePreview.onclick = modalLivePreviewToggle;
+ modalToggleLivePreview.title = "Toggle live preview";
+ modalControls.appendChild(modalToggleLivePreview);
+
const modalClose = document.createElement('span');
modalClose.className = 'modalClose cursor';
modalClose.innerHTML = '×';
diff --git a/javascript/progressbar.js b/javascript/progressbar.js
index f068bac6aba..23dea64ceda 100644
--- a/javascript/progressbar.js
+++ b/javascript/progressbar.js
@@ -76,6 +76,26 @@ function requestProgress(id_task, progressbarContainer, gallery, atEnd, onProgre
var dateStart = new Date();
var wasEverActive = false;
var parentProgressbar = progressbarContainer.parentNode;
+ var wakeLock = null;
+
+ var requestWakeLock = async function() {
+ if (!opts.prevent_screen_sleep_during_generation || wakeLock) return;
+ try {
+ wakeLock = await navigator.wakeLock.request('screen');
+ } catch (err) {
+ console.error('Wake Lock is not supported.');
+ }
+ };
+
+ var releaseWakeLock = async function() {
+ if (!opts.prevent_screen_sleep_during_generation || !wakeLock) return;
+ try {
+ await wakeLock.release();
+ wakeLock = null;
+ } catch (err) {
+ console.error('Wake Lock release failed', err);
+ }
+ };
var divProgress = document.createElement('div');
divProgress.className = 'progressDiv';
@@ -89,6 +109,7 @@ function requestProgress(id_task, progressbarContainer, gallery, atEnd, onProgre
var livePreview = null;
var removeProgressBar = function() {
+ releaseWakeLock();
if (!divProgress) return;
setTitle("");
@@ -100,6 +121,7 @@ function requestProgress(id_task, progressbarContainer, gallery, atEnd, onProgre
};
var funProgress = function(id_task) {
+ requestWakeLock();
request("./internal/progress", {id_task: id_task, live_preview: false}, function(res) {
if (res.completed) {
removeProgressBar();
diff --git a/javascript/ui.js b/javascript/ui.js
index e0f5feebd6c..20309634fb6 100644
--- a/javascript/ui.js
+++ b/javascript/ui.js
@@ -26,6 +26,14 @@ function selected_gallery_index() {
return all_gallery_buttons().findIndex(elem => elem.classList.contains('selected'));
}
+function gallery_container_buttons(gallery_container) {
+ return gradioApp().querySelectorAll(`#${gallery_container} .thumbnail-item.thumbnail-small`);
+}
+
+function selected_gallery_index_id(gallery_container) {
+ return Array.from(gallery_container_buttons(gallery_container)).findIndex(elem => elem.classList.contains('selected'));
+}
+
function extract_image_from_gallery(gallery) {
if (gallery.length == 0) {
return [null];
@@ -299,6 +307,7 @@ onAfterUiUpdate(function() {
var jsdata = textarea.value;
opts = JSON.parse(jsdata);
+ executeCallbacks(optionsAvailableCallbacks); /*global optionsAvailableCallbacks*/
executeCallbacks(optionsChangedCallbacks); /*global optionsChangedCallbacks*/
Object.defineProperty(textarea, 'value', {
@@ -337,8 +346,8 @@ onOptionsChanged(function() {
let txt2img_textarea, img2img_textarea = undefined;
function restart_reload() {
+ document.body.style.backgroundColor = "var(--background-fill-primary)";
document.body.innerHTML = '
Reloading...
';
-
var requestPing = function() {
requestGet("./internal/ping", {}, function(data) {
location.reload();
diff --git a/modules/api/api.py b/modules/api/api.py
index f468c385275..97ec7514ea1 100644
--- a/modules/api/api.py
+++ b/modules/api/api.py
@@ -43,7 +43,7 @@ def script_name_to_index(name, scripts):
def validate_sampler_name(name):
config = sd_samplers.all_samplers_map.get(name, None)
if config is None:
- raise HTTPException(status_code=404, detail="Sampler not found")
+ raise HTTPException(status_code=400, detail="Sampler not found")
return name
@@ -113,7 +113,7 @@ def encode_pil_to_base64(image):
image.save(output_bytes, format="PNG", pnginfo=(metadata if use_metadata else None), quality=opts.jpeg_quality)
elif opts.samples_format.lower() in ("jpg", "jpeg", "webp"):
- if image.mode == "RGBA":
+ if image.mode in ("RGBA", "P"):
image = image.convert("RGB")
parameters = image.info.get('parameters', None)
exif_bytes = piexif.dump({
@@ -372,7 +372,7 @@ def apply_infotext(self, request, tabname, *, script_runner=None, mentioned_scri
return {}
possible_fields = infotext_utils.paste_fields[tabname]["fields"]
- set_fields = request.model_dump(exclude_unset=True) if hasattr(request, "request") else request.dict(exclude_unset=True) # pydantic v1/v2 have differenrt names for this
+ set_fields = request.model_dump(exclude_unset=True) if hasattr(request, "request") else request.dict(exclude_unset=True) # pydantic v1/v2 have different names for this
params = infotext_utils.parse_generation_parameters(request.infotext)
def get_field_value(field, params):
@@ -438,15 +438,19 @@ def text2imgapi(self, txt2imgreq: models.StableDiffusionTxt2ImgProcessingAPI):
self.apply_infotext(txt2imgreq, "txt2img", script_runner=script_runner, mentioned_script_args=infotext_script_args)
selectable_scripts, selectable_script_idx = self.get_selectable_script(txt2imgreq.script_name, script_runner)
+ sampler, scheduler = sd_samplers.get_sampler_and_scheduler(txt2imgreq.sampler_name or txt2imgreq.sampler_index, txt2imgreq.scheduler)
populate = txt2imgreq.copy(update={ # Override __init__ params
- "sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
+ "sampler_name": validate_sampler_name(sampler),
"do_not_save_samples": not txt2imgreq.save_images,
"do_not_save_grid": not txt2imgreq.save_images,
})
if populate.sampler_name:
populate.sampler_index = None # prevent a warning later on
+ if not populate.scheduler and scheduler != "Automatic":
+ populate.scheduler = scheduler
+
args = vars(populate)
args.pop('script_name', None)
args.pop('script_args', None) # will refeed them to the pipeline directly after initializing them
@@ -502,9 +506,10 @@ def img2imgapi(self, img2imgreq: models.StableDiffusionImg2ImgProcessingAPI):
self.apply_infotext(img2imgreq, "img2img", script_runner=script_runner, mentioned_script_args=infotext_script_args)
selectable_scripts, selectable_script_idx = self.get_selectable_script(img2imgreq.script_name, script_runner)
+ sampler, scheduler = sd_samplers.get_sampler_and_scheduler(img2imgreq.sampler_name or img2imgreq.sampler_index, img2imgreq.scheduler)
populate = img2imgreq.copy(update={ # Override __init__ params
- "sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index),
+ "sampler_name": validate_sampler_name(sampler),
"do_not_save_samples": not img2imgreq.save_images,
"do_not_save_grid": not img2imgreq.save_images,
"mask": mask,
@@ -512,6 +517,9 @@ def img2imgapi(self, img2imgreq: models.StableDiffusionImg2ImgProcessingAPI):
if populate.sampler_name:
populate.sampler_index = None # prevent a warning later on
+ if not populate.scheduler and scheduler != "Automatic":
+ populate.scheduler = scheduler
+
args = vars(populate)
args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
args.pop('script_name', None)
diff --git a/modules/call_queue.py b/modules/call_queue.py
index b50931bcdb9..555c35312dd 100644
--- a/modules/call_queue.py
+++ b/modules/call_queue.py
@@ -1,8 +1,9 @@
+import os.path
from functools import wraps
import html
import time
-from modules import shared, progress, errors, devices, fifo_lock
+from modules import shared, progress, errors, devices, fifo_lock, profiling
queue_lock = fifo_lock.FIFOLock()
@@ -46,6 +47,22 @@ def f(*args, **kwargs):
def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
+ @wraps(func)
+ def f(*args, **kwargs):
+ try:
+ res = func(*args, **kwargs)
+ finally:
+ shared.state.skipped = False
+ shared.state.interrupted = False
+ shared.state.stopping_generation = False
+ shared.state.job_count = 0
+ shared.state.job = ""
+ return res
+
+ return wrap_gradio_call_no_job(f, extra_outputs, add_stats)
+
+
+def wrap_gradio_call_no_job(func, extra_outputs=None, add_stats=False):
@wraps(func)
def f(*args, extra_outputs_array=extra_outputs, **kwargs):
run_memmon = shared.opts.memmon_poll_rate > 0 and not shared.mem_mon.disabled and add_stats
@@ -65,9 +82,6 @@ def f(*args, extra_outputs_array=extra_outputs, **kwargs):
arg_str += f" (Argument list truncated at {max_debug_str_len}/{len(arg_str)} characters)"
errors.report(f"{message}\n{arg_str}", exc_info=True)
- shared.state.job = ""
- shared.state.job_count = 0
-
if extra_outputs_array is None:
extra_outputs_array = [None, '']
@@ -76,11 +90,6 @@ def f(*args, extra_outputs_array=extra_outputs, **kwargs):
devices.torch_gc()
- shared.state.skipped = False
- shared.state.interrupted = False
- shared.state.stopping_generation = False
- shared.state.job_count = 0
-
if not add_stats:
return tuple(res)
@@ -111,9 +120,15 @@ def f(*args, extra_outputs_array=extra_outputs, **kwargs):
else:
vram_html = ''
+ if shared.opts.profiling_enable and os.path.exists(shared.opts.profiling_filename):
+ profiling_html = f" [ Profile ]
"
+ else:
+ profiling_html = ''
+
# last item is always HTML
- res[-1] += f""
+ res[-1] += f""
return tuple(res)
return f
+
diff --git a/modules/cmd_args.py b/modules/cmd_args.py
index 0ca8684be40..f39e4418ae0 100644
--- a/modules/cmd_args.py
+++ b/modules/cmd_args.py
@@ -21,6 +21,7 @@
parser.add_argument("--loglevel", type=str, help="log level; one of: CRITICAL, ERROR, WARNING, INFO, DEBUG", default=None)
parser.add_argument("--do-not-download-clip", action='store_true', help="do not download CLIP model even if it's not included in the checkpoint")
parser.add_argument("--data-dir", type=normalized_filepath, default=os.path.dirname(os.path.dirname(os.path.realpath(__file__))), help="base path where all user data is stored")
+parser.add_argument("--models-dir", type=normalized_filepath, default=None, help="base path where models are stored; overrides --data-dir")
parser.add_argument("--config", type=normalized_filepath, default=sd_default_config, help="path to config which constructs model",)
parser.add_argument("--ckpt", type=normalized_filepath, default=sd_model_file, help="path to checkpoint of stable diffusion model; if specified, this checkpoint will be added to the list of checkpoints and loaded",)
parser.add_argument("--ckpt-dir", type=normalized_filepath, default=None, help="Path to directory with stable diffusion checkpoints")
@@ -30,7 +31,7 @@
parser.add_argument("--no-half", action='store_true', help="do not switch the model to 16-bit floats")
parser.add_argument("--no-half-vae", action='store_true', help="do not switch the VAE model to 16-bit floats")
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
-parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
+parser.add_argument("--max-batch-count", type=int, default=16, help="does not do anything")
parser.add_argument("--embeddings-dir", type=normalized_filepath, default=os.path.join(data_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
parser.add_argument("--textual-inversion-templates-dir", type=normalized_filepath, default=os.path.join(script_path, 'textual_inversion_templates'), help="directory with textual inversion templates")
parser.add_argument("--hypernetwork-dir", type=normalized_filepath, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
@@ -42,7 +43,7 @@
parser.add_argument("--lowram", action='store_true', help="load stable diffusion checkpoint weights to VRAM instead of RAM")
parser.add_argument("--always-batch-cond-uncond", action='store_true', help="does not do anything")
parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.")
-parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
+parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "half", "autocast"], default="autocast")
parser.add_argument("--upcast-sampling", action='store_true', help="upcast sampling. No effect with --no-half. Usually produces similar results to --no-half with better performance while using less memory.")
parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site")
parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None)
diff --git a/modules/deepbooru.py b/modules/deepbooru.py
index 547e1b4c67a..fb043feb296 100644
--- a/modules/deepbooru.py
+++ b/modules/deepbooru.py
@@ -57,7 +57,7 @@ def tag_multi(self, pil_image, force_disable_ranks=False):
a = np.expand_dims(np.array(pic, dtype=np.float32), 0) / 255
with torch.no_grad(), devices.autocast():
- x = torch.from_numpy(a).to(devices.device)
+ x = torch.from_numpy(a).to(devices.device, devices.dtype)
y = self.model(x)[0].detach().cpu().numpy()
probability_dict = {}
diff --git a/modules/devices.py b/modules/devices.py
index 8ba7b7c6871..bebd49149ab 100644
--- a/modules/devices.py
+++ b/modules/devices.py
@@ -127,6 +127,9 @@ def enable_tf32():
backend = "cpu"
cpu: torch.device = torch.device("cpu")
fp8: bool = False
+# Force fp16 for all models in inference. No casting during inference.
+# This flag is controlled by "--precision half" command line arg.
+force_fp16: bool = False
device: torch.device = None
device_interrogate: torch.device = None
device_gfpgan: torch.device = None
@@ -140,6 +143,8 @@ def enable_tf32():
def cond_cast_unet(input):
+ if force_fp16:
+ return input.to(torch.float16)
return input.to(dtype_unet) if unet_needs_upcast else input
@@ -219,6 +224,11 @@ def autocast(disable=False):
if disable:
return contextlib.nullcontext()
+ if force_fp16:
+ # No casting during inference if force_fp16 is enabled.
+ # All tensor dtype conversion happens before inference.
+ return contextlib.nullcontext()
+
if fp8 and device==cpu:
return torch.autocast("cpu", dtype=torch.bfloat16, enabled=True)
@@ -252,22 +262,22 @@ def test_for_nans(x, where):
if shared.cmd_opts.disable_nan_check:
return
- if not torch.all(torch.isnan(x)).item():
+ if not torch.isnan(x[(0, ) * len(x.shape)]):
return
if where == "unet":
- message = "A tensor with all NaNs was produced in Unet."
+ message = "A tensor with NaNs was produced in Unet."
if not shared.cmd_opts.no_half:
message += " This could be either because there's not enough precision to represent the picture, or because your video card does not support half type. Try setting the \"Upcast cross attention layer to float32\" option in Settings > Stable Diffusion or using the --no-half commandline argument to fix this."
elif where == "vae":
- message = "A tensor with all NaNs was produced in VAE."
+ message = "A tensor with NaNs was produced in VAE."
if not shared.cmd_opts.no_half and not shared.cmd_opts.no_half_vae:
message += " This could be because there's not enough precision to represent the picture. Try adding --no-half-vae commandline argument to fix this."
else:
- message = "A tensor with all NaNs was produced."
+ message = "A tensor with NaNs was produced."
message += " Use --disable-nan-check commandline argument to disable this check."
@@ -277,7 +287,7 @@ def test_for_nans(x, where):
@lru_cache
def first_time_calculation():
"""
- just do any calculation with pytorch layers - the first time this is done it allocaltes about 700MB of memory and
+ just do any calculation with pytorch layers - the first time this is done it allocates about 700MB of memory and
spends about 2.7 seconds doing that, at least with NVidia.
"""
@@ -288,3 +298,17 @@ def first_time_calculation():
x = torch.zeros((1, 1, 3, 3)).to(device, dtype)
conv2d = torch.nn.Conv2d(1, 1, (3, 3)).to(device, dtype)
conv2d(x)
+
+
+def force_model_fp16():
+ """
+ ldm and sgm has modules.diffusionmodules.util.GroupNorm32.forward, which
+ force conversion of input to float32. If force_fp16 is enabled, we need to
+ prevent this casting.
+ """
+ assert force_fp16
+ import sgm.modules.diffusionmodules.util as sgm_util
+ import ldm.modules.diffusionmodules.util as ldm_util
+ sgm_util.GroupNorm32 = torch.nn.GroupNorm
+ ldm_util.GroupNorm32 = torch.nn.GroupNorm
+ print("ldm/sgm GroupNorm32 replaced with normal torch.nn.GroupNorm due to `--precision half`.")
diff --git a/modules/extensions.py b/modules/extensions.py
index 5ad934b4df3..24de766eb90 100644
--- a/modules/extensions.py
+++ b/modules/extensions.py
@@ -191,8 +191,9 @@ def list_files(self, subdir, extension):
def check_updates(self):
repo = Repo(self.path)
+ branch_name = f'{repo.remote().name}/{self.branch}'
for fetch in repo.remote().fetch(dry_run=True):
- if self.branch and fetch.name != f'{repo.remote().name}/{self.branch}':
+ if self.branch and fetch.name != branch_name:
continue
if fetch.flags != fetch.HEAD_UPTODATE:
self.can_update = True
@@ -200,7 +201,7 @@ def check_updates(self):
return
try:
- origin = repo.rev_parse('origin')
+ origin = repo.rev_parse(branch_name)
if repo.head.commit != origin:
self.can_update = True
self.status = "behind HEAD"
@@ -213,8 +214,10 @@ def check_updates(self):
self.can_update = False
self.status = "latest"
- def fetch_and_reset_hard(self, commit='origin'):
+ def fetch_and_reset_hard(self, commit=None):
repo = Repo(self.path)
+ if commit is None:
+ commit = f'{repo.remote().name}/{self.branch}'
# Fix: `error: Your local changes to the following files would be overwritten by merge`,
# because WSL2 Docker set 755 file permissions instead of 644, this results to the error.
repo.git.fetch(all=True)
diff --git a/modules/gfpgan_model.py b/modules/gfpgan_model.py
index 445b040925e..01ef899e4a6 100644
--- a/modules/gfpgan_model.py
+++ b/modules/gfpgan_model.py
@@ -36,13 +36,11 @@ def load_net(self) -> torch.Module:
ext_filter=['.pth'],
):
if 'GFPGAN' in os.path.basename(model_path):
- model = modelloader.load_spandrel_model(
+ return modelloader.load_spandrel_model(
model_path,
device=self.get_device(),
expected_architecture='GFPGAN',
).model
- model.different_w = True # see https://github.com/chaiNNer-org/spandrel/pull/81
- return model
raise ValueError("No GFPGAN model found")
def restore(self, np_image):
diff --git a/modules/images.py b/modules/images.py
index c0ff8a6306a..cfdfb338446 100644
--- a/modules/images.py
+++ b/modules/images.py
@@ -54,11 +54,14 @@ def image_grid(imgs, batch_size=1, rows=None):
params = script_callbacks.ImageGridLoopParams(imgs, cols, rows)
script_callbacks.image_grid_callback(params)
- w, h = imgs[0].size
- grid = Image.new('RGB', size=(params.cols * w, params.rows * h), color='black')
+ w, h = map(max, zip(*(img.size for img in imgs)))
+ grid_background_color = ImageColor.getcolor(opts.grid_background_color, 'RGB')
+ grid = Image.new('RGB', size=(params.cols * w, params.rows * h), color=grid_background_color)
for i, img in enumerate(params.imgs):
- grid.paste(img, box=(i % params.cols * w, i // params.cols * h))
+ img_w, img_h = img.size
+ w_offset, h_offset = 0 if img_w == w else (w - img_w) // 2, 0 if img_h == h else (h - img_h) // 2
+ grid.paste(img, box=(i % params.cols * w + w_offset, i // params.cols * h + h_offset))
return grid
@@ -377,6 +380,7 @@ def get_sampler_scheduler(p, sampler):
class FilenameGenerator:
replacements = {
+ 'basename': lambda self: self.basename or 'img',
'seed': lambda self: self.seed if self.seed is not None else '',
'seed_first': lambda self: self.seed if self.p.batch_size == 1 else self.p.all_seeds[0],
'seed_last': lambda self: NOTHING_AND_SKIP_PREVIOUS_TEXT if self.p.batch_size == 1 else self.p.all_seeds[-1],
@@ -413,12 +417,13 @@ class FilenameGenerator:
}
default_time_format = '%Y%m%d%H%M%S'
- def __init__(self, p, seed, prompt, image, zip=False):
+ def __init__(self, p, seed, prompt, image, zip=False, basename=""):
self.p = p
self.seed = seed
self.prompt = prompt
self.image = image
self.zip = zip
+ self.basename = basename
def get_vae_filename(self):
"""Get the name of the VAE file."""
@@ -606,9 +611,10 @@ def save_image_with_geninfo(image, geninfo, filename, extension=None, existing_p
piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(geninfo or "", encoding="unicode")
},
})
+ else:
+ exif_bytes = None
-
- image.save(filename,format=image_format, exif=exif_bytes)
+ image.save(filename,format=image_format, quality=opts.jpeg_quality, exif=exif_bytes)
elif extension.lower() == ".gif":
image.save(filename, format=image_format, comment=geninfo)
else:
@@ -648,12 +654,12 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
txt_fullfn (`str` or None):
If a text file is saved for this image, this will be its full path. Otherwise None.
"""
- namegen = FilenameGenerator(p, seed, prompt, image)
+ namegen = FilenameGenerator(p, seed, prompt, image, basename=basename)
# WebP and JPG formats have maximum dimension limits of 16383 and 65535 respectively. switch to PNG which has a much higher limit
if (image.height > 65535 or image.width > 65535) and extension.lower() in ("jpg", "jpeg") or (image.height > 16383 or image.width > 16383) and extension.lower() == "webp":
print('Image dimensions too large; saving as PNG')
- extension = ".png"
+ extension = "png"
if save_to_dirs is None:
save_to_dirs = (grid and opts.grid_save_to_dirs) or (not grid and opts.save_to_dirs and not no_prompt)
@@ -789,7 +795,10 @@ def read_info_from_image(image: Image.Image) -> tuple[str | None, dict]:
if exif_comment:
geninfo = exif_comment
elif "comment" in items: # for gif
- geninfo = items["comment"].decode('utf8', errors="ignore")
+ if isinstance(items["comment"], bytes):
+ geninfo = items["comment"].decode('utf8', errors="ignore")
+ else:
+ geninfo = items["comment"]
for field in IGNORED_INFO_KEYS:
items.pop(field, None)
diff --git a/modules/img2img.py b/modules/img2img.py
index a1d042c2123..24f869f5c6a 100644
--- a/modules/img2img.py
+++ b/modules/img2img.py
@@ -17,11 +17,14 @@
import modules.scripts
-def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=False, scale_by=1.0, use_png_info=False, png_info_props=None, png_info_dir=None):
+def process_batch(p, input, output_dir, inpaint_mask_dir, args, to_scale=False, scale_by=1.0, use_png_info=False, png_info_props=None, png_info_dir=None):
output_dir = output_dir.strip()
processing.fix_seed(p)
- batch_images = list(shared.walk_files(input_dir, allowed_extensions=(".png", ".jpg", ".jpeg", ".webp", ".tif", ".tiff")))
+ if isinstance(input, str):
+ batch_images = list(shared.walk_files(input, allowed_extensions=(".png", ".jpg", ".jpeg", ".webp", ".tif", ".tiff")))
+ else:
+ batch_images = [os.path.abspath(x.name) for x in input]
is_inpaint_batch = False
if inpaint_mask_dir:
@@ -146,7 +149,7 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=Fal
return batch_results
-def img2img(id_task: str, request: gr.Request, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, mask_blur: int, mask_alpha: float, inpainting_fill: int, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, img2img_batch_use_png_info: bool, img2img_batch_png_info_props: list, img2img_batch_png_info_dir: str, *args):
+def img2img(id_task: str, request: gr.Request, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, mask_blur: int, mask_alpha: float, inpainting_fill: int, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, img2img_batch_use_png_info: bool, img2img_batch_png_info_props: list, img2img_batch_png_info_dir: str, img2img_batch_source_type: str, img2img_batch_upload: list, *args):
override_settings = create_override_settings_dict(override_settings_texts)
is_batch = mode == 5
@@ -221,8 +224,15 @@ def img2img(id_task: str, request: gr.Request, mode: int, prompt: str, negative_
with closing(p):
if is_batch:
- assert not shared.cmd_opts.hide_ui_dir_config, "Launched with --hide-ui-dir-config, batch img2img disabled"
- processed = process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir, args, to_scale=selected_scale_tab == 1, scale_by=scale_by, use_png_info=img2img_batch_use_png_info, png_info_props=img2img_batch_png_info_props, png_info_dir=img2img_batch_png_info_dir)
+ if img2img_batch_source_type == "upload":
+ assert isinstance(img2img_batch_upload, list) and img2img_batch_upload
+ output_dir = ""
+ inpaint_mask_dir = ""
+ png_info_dir = img2img_batch_png_info_dir if not shared.cmd_opts.hide_ui_dir_config else ""
+ processed = process_batch(p, img2img_batch_upload, output_dir, inpaint_mask_dir, args, to_scale=selected_scale_tab == 1, scale_by=scale_by, use_png_info=img2img_batch_use_png_info, png_info_props=img2img_batch_png_info_props, png_info_dir=png_info_dir)
+ else: # "from dir"
+ assert not shared.cmd_opts.hide_ui_dir_config, "Launched with --hide-ui-dir-config, batch img2img disabled"
+ processed = process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir, args, to_scale=selected_scale_tab == 1, scale_by=scale_by, use_png_info=img2img_batch_use_png_info, png_info_props=img2img_batch_png_info_props, png_info_dir=img2img_batch_png_info_dir)
if processed is None:
processed = Processed(p, [], p.seed, "")
diff --git a/modules/infotext_utils.py b/modules/infotext_utils.py
index f1e8f54ba5e..32dbafa6518 100644
--- a/modules/infotext_utils.py
+++ b/modules/infotext_utils.py
@@ -146,18 +146,19 @@ def connect_paste_params_buttons():
destination_height_component = next(iter([field for field, name in fields if name == "Size-2"] if fields else []), None)
if binding.source_image_component and destination_image_component:
+ need_send_dementions = destination_width_component and binding.tabname != 'inpaint'
if isinstance(binding.source_image_component, gr.Gallery):
- func = send_image_and_dimensions if destination_width_component else image_from_url_text
+ func = send_image_and_dimensions if need_send_dementions else image_from_url_text
jsfunc = "extract_image_from_gallery"
else:
- func = send_image_and_dimensions if destination_width_component else lambda x: x
+ func = send_image_and_dimensions if need_send_dementions else lambda x: x
jsfunc = None
binding.paste_button.click(
fn=func,
_js=jsfunc,
inputs=[binding.source_image_component],
- outputs=[destination_image_component, destination_width_component, destination_height_component] if destination_width_component else [destination_image_component],
+ outputs=[destination_image_component, destination_width_component, destination_height_component] if need_send_dementions else [destination_image_component],
show_progress=False,
)
diff --git a/modules/launch_utils.py b/modules/launch_utils.py
index cff32d3faa2..a084daf7580 100644
--- a/modules/launch_utils.py
+++ b/modules/launch_utils.py
@@ -10,6 +10,7 @@
import platform
import json
import glob
+import shlex
from functools import lru_cache
from modules import cmd_args, errors
@@ -78,9 +79,7 @@ def git_tag():
return subprocess.check_output([git, "-C", script_path, "describe", "--tags"], shell=False, encoding='utf8').strip()
except Exception:
try:
- changelog_md = os.path.join(
- os.path.dirname(os.path.dirname(__file__)), "CHANGELOG.md"
- )
+ changelog_md = os.path.join(script_path, "CHANGELOG.md")
with open(changelog_md, "r", encoding="utf-8") as file:
line = next((line.strip() for line in file if line.strip()), "")
line = line.replace("## ", "")
@@ -335,9 +334,7 @@ def run_extension_installer(extension_dir):
try:
env = os.environ.copy()
- env[
- "PYTHONPATH"
- ] = f"{os.path.abspath('.')}{os.pathsep}{env.get('PYTHONPATH', '')}"
+ env['PYTHONPATH'] = f"{script_path}{os.pathsep}{env.get('PYTHONPATH', '')}"
stdout = run(
f'"{python}" "{path_installer}"',
@@ -486,8 +483,6 @@ def prepare_environment():
torch_command = os.environ.get('TORCH_COMMAND', f"pip install torch==2.0.0a0 intel-extension-for-pytorch==2.0.110+gitba7f6c1 --extra-index-url {torch_index_url}")
else:
nvidia_driver_found = shutil.which("nvidia-smi") is not None
- rocm_found = shutil.which("rocminfo") is not None
- hip_found = shutil.which("hipinfo") is not None
if nvidia_driver_found:
print("NVIDIA driver was found.")
backend = "cuda"
@@ -498,27 +493,30 @@ def prepare_environment():
"TORCH_COMMAND",
f"pip install torch=={torch_version} torchvision --extra-index-url {torch_index_url}",
)
- elif system == "Windows" and hip_found: # ZLUDA
- args.use_zluda = True
- print("ROCm Toolkit was found.")
- backend = "cuda"
- torch_index_url = os.environ.get(
- "TORCH_INDEX_URL", "https://download.pytorch.org/whl/cu118"
- )
- torch_command = os.environ.get(
- "TORCH_COMMAND",
- f"pip install torch=={torch_version} torchvision --index-url {torch_index_url}",
- )
- elif rocm_found:
- print("ROCm Toolkit was found.")
- backend = "rocm"
- torch_index_url = os.environ.get(
- "TORCH_INDEX_URL", "https://download.pytorch.org/whl/rocm6.0"
- )
- torch_command = os.environ.get(
- "TORCH_COMMAND",
- f"pip install torch=={torch_version} torchvision --index-url {torch_index_url}",
- )
+ else:
+ from modules import rocm
+ if rocm.is_installed:
+ if system == "Windows": # ZLUDA
+ args.use_zluda = True
+ print(f"ROCm Toolkit {rocm.version} was found.")
+ backend = "cuda"
+ torch_index_url = os.environ.get(
+ "TORCH_INDEX_URL", "https://download.pytorch.org/whl/cu118"
+ )
+ torch_command = os.environ.get(
+ "TORCH_COMMAND",
+ f"pip install torch=={torch_version} torchvision --index-url {torch_index_url}",
+ )
+ else:
+ print(f"ROCm Toolkit {rocm.version} was found.")
+ backend = "rocm"
+ torch_index_url = os.environ.get(
+ "TORCH_INDEX_URL", "https://download.pytorch.org/whl/rocm6.0"
+ )
+ torch_command = os.environ.get(
+ "TORCH_COMMAND",
+ f"pip install torch=={torch_version} torchvision --index-url {torch_index_url}",
+ )
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
requirements_file_for_npu = os.environ.get('REQS_FILE_FOR_NPU', "requirements_npu.txt")
@@ -669,7 +667,6 @@ def prepare_environment():
from modules import devices
devices.backend = backend
-
def configure_for_tests():
if "--api" not in sys.argv:
sys.argv.append("--api")
@@ -683,9 +680,7 @@ def configure_for_tests():
def start():
- print(
- f"Launching {'API server' if '--nowebui' in sys.argv else 'Web UI'} with arguments: {' '.join(sys.argv[1:])}"
- )
+ print(f"Launching {'API server' if '--nowebui' in sys.argv else 'Web UI'} with arguments: {shlex.join(sys.argv[1:])}")
import webui
if "--nowebui" in sys.argv:
diff --git a/modules/lowvram.py b/modules/lowvram.py
index 45701046b54..6728c337b64 100644
--- a/modules/lowvram.py
+++ b/modules/lowvram.py
@@ -1,9 +1,12 @@
+from collections import namedtuple
+
import torch
from modules import devices, shared
module_in_gpu = None
cpu = torch.device("cpu")
+ModuleWithParent = namedtuple('ModuleWithParent', ['module', 'parent'], defaults=['None'])
def send_everything_to_cpu():
global module_in_gpu
@@ -75,13 +78,14 @@ def first_stage_model_decode_wrap(z):
(sd_model, 'depth_model'),
(sd_model, 'embedder'),
(sd_model, 'model'),
- (sd_model, 'embedder'),
]
is_sdxl = hasattr(sd_model, 'conditioner')
is_sd2 = not is_sdxl and hasattr(sd_model.cond_stage_model, 'model')
- if is_sdxl:
+ if hasattr(sd_model, 'medvram_fields'):
+ to_remain_in_cpu = sd_model.medvram_fields()
+ elif is_sdxl:
to_remain_in_cpu.append((sd_model, 'conditioner'))
elif is_sd2:
to_remain_in_cpu.append((sd_model.cond_stage_model, 'model'))
@@ -103,7 +107,21 @@ def first_stage_model_decode_wrap(z):
setattr(obj, field, module)
# register hooks for those the first three models
- if is_sdxl:
+ if hasattr(sd_model, "cond_stage_model") and hasattr(sd_model.cond_stage_model, "medvram_modules"):
+ for module in sd_model.cond_stage_model.medvram_modules():
+ if isinstance(module, ModuleWithParent):
+ parent = module.parent
+ module = module.module
+ else:
+ parent = None
+
+ if module:
+ module.register_forward_pre_hook(send_me_to_gpu)
+
+ if parent:
+ parents[module] = parent
+
+ elif is_sdxl:
sd_model.conditioner.register_forward_pre_hook(send_me_to_gpu)
elif is_sd2:
sd_model.cond_stage_model.model.register_forward_pre_hook(send_me_to_gpu)
@@ -117,9 +135,9 @@ def first_stage_model_decode_wrap(z):
sd_model.first_stage_model.register_forward_pre_hook(send_me_to_gpu)
sd_model.first_stage_model.encode = first_stage_model_encode_wrap
sd_model.first_stage_model.decode = first_stage_model_decode_wrap
- if sd_model.depth_model:
+ if getattr(sd_model, 'depth_model', None) is not None:
sd_model.depth_model.register_forward_pre_hook(send_me_to_gpu)
- if sd_model.embedder:
+ if getattr(sd_model, 'embedder', None) is not None:
sd_model.embedder.register_forward_pre_hook(send_me_to_gpu)
if use_medvram:
diff --git a/modules/modelloader.py b/modules/modelloader.py
index 115415c8e65..36e7415af43 100644
--- a/modules/modelloader.py
+++ b/modules/modelloader.py
@@ -23,6 +23,7 @@ def load_file_from_url(
model_dir: str,
progress: bool = True,
file_name: str | None = None,
+ hash_prefix: str | None = None,
) -> str:
"""Download a file from `url` into `model_dir`, using the file present if possible.
@@ -36,11 +37,11 @@ def load_file_from_url(
if not os.path.exists(cached_file):
print(f'Downloading: "{url}" to {cached_file}\n')
from torch.hub import download_url_to_file
- download_url_to_file(url, cached_file, progress=progress)
+ download_url_to_file(url, cached_file, progress=progress, hash_prefix=hash_prefix)
return cached_file
-def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None, ext_blacklist=None) -> list:
+def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None, ext_blacklist=None, hash_prefix=None) -> list:
"""
A one-and done loader to try finding the desired models in specified directories.
@@ -49,6 +50,7 @@ def load_models(model_path: str, model_url: str = None, command_path: str = None
@param model_path: The location to store/find models in.
@param command_path: A command-line argument to search for models in first.
@param ext_filter: An optional list of filename extensions to filter by
+ @param hash_prefix: the expected sha256 of the model_url
@return: A list of paths containing the desired model(s)
"""
output = []
@@ -78,7 +80,7 @@ def load_models(model_path: str, model_url: str = None, command_path: str = None
if model_url is not None and len(output) == 0:
if download_name is not None:
- output.append(load_file_from_url(model_url, model_dir=places[0], file_name=download_name))
+ output.append(load_file_from_url(model_url, model_dir=places[0], file_name=download_name, hash_prefix=hash_prefix))
else:
output.append(model_url)
@@ -137,6 +139,27 @@ def load_upscalers():
key=lambda x: x.name.lower() if not isinstance(x.scaler, (UpscalerNone, UpscalerLanczos, UpscalerNearest)) else ""
)
+# None: not loaded, False: failed to load, True: loaded
+_spandrel_extra_init_state = None
+
+
+def _init_spandrel_extra_archs() -> None:
+ """
+ Try to initialize `spandrel_extra_archs` (exactly once).
+ """
+ global _spandrel_extra_init_state
+ if _spandrel_extra_init_state is not None:
+ return
+
+ try:
+ import spandrel
+ import spandrel_extra_arches
+ spandrel.MAIN_REGISTRY.add(*spandrel_extra_arches.EXTRA_REGISTRY)
+ _spandrel_extra_init_state = True
+ except Exception:
+ logger.warning("Failed to load spandrel_extra_arches", exc_info=True)
+ _spandrel_extra_init_state = False
+
def load_spandrel_model(
path: str | os.PathLike,
@@ -146,11 +169,16 @@ def load_spandrel_model(
dtype: str | torch.dtype | None = None,
expected_architecture: str | None = None,
) -> spandrel.ModelDescriptor:
+ global _spandrel_extra_init_state
+
import spandrel
+ _init_spandrel_extra_archs()
+
model_descriptor = spandrel.ModelLoader(device=device).load_from_file(str(path))
- if expected_architecture and model_descriptor.architecture != expected_architecture:
+ arch = model_descriptor.architecture
+ if expected_architecture and arch.name != expected_architecture:
logger.warning(
- f"Model {path!r} is not a {expected_architecture!r} model (got {model_descriptor.architecture!r})",
+ f"Model {path!r} is not a {expected_architecture!r} model (got {arch.name!r})",
)
half = False
if prefer_half:
@@ -164,6 +192,6 @@ def load_spandrel_model(
model_descriptor.model.eval()
logger.debug(
"Loaded %s from %s (device=%s, half=%s, dtype=%s)",
- model_descriptor, path, device, half, dtype,
+ arch, path, device, half, dtype,
)
return model_descriptor
diff --git a/modules/models/diffusion/uni_pc/uni_pc.py b/modules/models/diffusion/uni_pc/uni_pc.py
index d257a7286fc..3333bc808d0 100644
--- a/modules/models/diffusion/uni_pc/uni_pc.py
+++ b/modules/models/diffusion/uni_pc/uni_pc.py
@@ -323,7 +323,7 @@ def cond_grad_fn(x, t_input, condition):
def model_fn(x, t_continuous, condition, unconditional_condition):
"""
- The noise predicition model function that is used for DPM-Solver.
+ The noise prediction model function that is used for DPM-Solver.
"""
if t_continuous.reshape((-1,)).shape[0] == 1:
t_continuous = t_continuous.expand((x.shape[0]))
diff --git a/modules/models/sd3/mmdit.py b/modules/models/sd3/mmdit.py
new file mode 100644
index 00000000000..8ddf49a4e3e
--- /dev/null
+++ b/modules/models/sd3/mmdit.py
@@ -0,0 +1,622 @@
+### This file contains impls for MM-DiT, the core model component of SD3
+
+import math
+from typing import Dict, Optional
+import numpy as np
+import torch
+import torch.nn as nn
+from einops import rearrange, repeat
+from modules.models.sd3.other_impls import attention, Mlp
+
+
+class PatchEmbed(nn.Module):
+ """ 2D Image to Patch Embedding"""
+ def __init__(
+ self,
+ img_size: Optional[int] = 224,
+ patch_size: int = 16,
+ in_chans: int = 3,
+ embed_dim: int = 768,
+ flatten: bool = True,
+ bias: bool = True,
+ strict_img_size: bool = True,
+ dynamic_img_pad: bool = False,
+ dtype=None,
+ device=None,
+ ):
+ super().__init__()
+ self.patch_size = (patch_size, patch_size)
+ if img_size is not None:
+ self.img_size = (img_size, img_size)
+ self.grid_size = tuple([s // p for s, p in zip(self.img_size, self.patch_size)])
+ self.num_patches = self.grid_size[0] * self.grid_size[1]
+ else:
+ self.img_size = None
+ self.grid_size = None
+ self.num_patches = None
+
+ # flatten spatial dim and transpose to channels last, kept for bwd compat
+ self.flatten = flatten
+ self.strict_img_size = strict_img_size
+ self.dynamic_img_pad = dynamic_img_pad
+
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias, dtype=dtype, device=device)
+
+ def forward(self, x):
+ B, C, H, W = x.shape
+ x = self.proj(x)
+ if self.flatten:
+ x = x.flatten(2).transpose(1, 2) # NCHW -> NLC
+ return x
+
+
+def modulate(x, shift, scale):
+ if shift is None:
+ shift = torch.zeros_like(scale)
+ return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
+
+
+#################################################################################
+# Sine/Cosine Positional Embedding Functions #
+#################################################################################
+
+
+def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, scaling_factor=None, offset=None):
+ """
+ grid_size: int of the grid height and width
+ return:
+ pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
+ """
+ grid_h = np.arange(grid_size, dtype=np.float32)
+ grid_w = np.arange(grid_size, dtype=np.float32)
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
+ grid = np.stack(grid, axis=0)
+ if scaling_factor is not None:
+ grid = grid / scaling_factor
+ if offset is not None:
+ grid = grid - offset
+ grid = grid.reshape([2, 1, grid_size, grid_size])
+ pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
+ if cls_token and extra_tokens > 0:
+ pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
+ return pos_embed
+
+
+def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
+ assert embed_dim % 2 == 0
+ # use half of dimensions to encode grid_h
+ emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
+ emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
+ emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
+ return emb
+
+
+def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
+ """
+ embed_dim: output dimension for each position
+ pos: a list of positions to be encoded: size (M,)
+ out: (M, D)
+ """
+ assert embed_dim % 2 == 0
+ omega = np.arange(embed_dim // 2, dtype=np.float64)
+ omega /= embed_dim / 2.0
+ omega = 1.0 / 10000**omega # (D/2,)
+ pos = pos.reshape(-1) # (M,)
+ out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
+ emb_sin = np.sin(out) # (M, D/2)
+ emb_cos = np.cos(out) # (M, D/2)
+ return np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
+
+
+#################################################################################
+# Embedding Layers for Timesteps and Class Labels #
+#################################################################################
+
+
+class TimestepEmbedder(nn.Module):
+ """Embeds scalar timesteps into vector representations."""
+
+ def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None):
+ super().__init__()
+ self.mlp = nn.Sequential(
+ nn.Linear(frequency_embedding_size, hidden_size, bias=True, dtype=dtype, device=device),
+ nn.SiLU(),
+ nn.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device),
+ )
+ self.frequency_embedding_size = frequency_embedding_size
+
+ @staticmethod
+ def timestep_embedding(t, dim, max_period=10000):
+ """
+ Create sinusoidal timestep embeddings.
+ :param t: a 1-D Tensor of N indices, one per batch element.
+ These may be fractional.
+ :param dim: the dimension of the output.
+ :param max_period: controls the minimum frequency of the embeddings.
+ :return: an (N, D) Tensor of positional embeddings.
+ """
+ half = dim // 2
+ freqs = torch.exp(
+ -math.log(max_period)
+ * torch.arange(start=0, end=half, dtype=torch.float32)
+ / half
+ ).to(device=t.device)
+ args = t[:, None].float() * freqs[None]
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
+ if dim % 2:
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
+ if torch.is_floating_point(t):
+ embedding = embedding.to(dtype=t.dtype)
+ return embedding
+
+ def forward(self, t, dtype, **kwargs):
+ t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype)
+ t_emb = self.mlp(t_freq)
+ return t_emb
+
+
+class VectorEmbedder(nn.Module):
+ """Embeds a flat vector of dimension input_dim"""
+
+ def __init__(self, input_dim: int, hidden_size: int, dtype=None, device=None):
+ super().__init__()
+ self.mlp = nn.Sequential(
+ nn.Linear(input_dim, hidden_size, bias=True, dtype=dtype, device=device),
+ nn.SiLU(),
+ nn.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device),
+ )
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ return self.mlp(x)
+
+
+#################################################################################
+# Core DiT Model #
+#################################################################################
+
+
+class QkvLinear(torch.nn.Linear):
+ pass
+
+def split_qkv(qkv, head_dim):
+ qkv = qkv.reshape(qkv.shape[0], qkv.shape[1], 3, -1, head_dim).movedim(2, 0)
+ return qkv[0], qkv[1], qkv[2]
+
+def optimized_attention(qkv, num_heads):
+ return attention(qkv[0], qkv[1], qkv[2], num_heads)
+
+class SelfAttention(nn.Module):
+ ATTENTION_MODES = ("xformers", "torch", "torch-hb", "math", "debug")
+
+ def __init__(
+ self,
+ dim: int,
+ num_heads: int = 8,
+ qkv_bias: bool = False,
+ qk_scale: Optional[float] = None,
+ attn_mode: str = "xformers",
+ pre_only: bool = False,
+ qk_norm: Optional[str] = None,
+ rmsnorm: bool = False,
+ dtype=None,
+ device=None,
+ ):
+ super().__init__()
+ self.num_heads = num_heads
+ self.head_dim = dim // num_heads
+
+ self.qkv = QkvLinear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
+ if not pre_only:
+ self.proj = nn.Linear(dim, dim, dtype=dtype, device=device)
+ assert attn_mode in self.ATTENTION_MODES
+ self.attn_mode = attn_mode
+ self.pre_only = pre_only
+
+ if qk_norm == "rms":
+ self.ln_q = RMSNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device)
+ self.ln_k = RMSNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device)
+ elif qk_norm == "ln":
+ self.ln_q = nn.LayerNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device)
+ self.ln_k = nn.LayerNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device)
+ elif qk_norm is None:
+ self.ln_q = nn.Identity()
+ self.ln_k = nn.Identity()
+ else:
+ raise ValueError(qk_norm)
+
+ def pre_attention(self, x: torch.Tensor):
+ B, L, C = x.shape
+ qkv = self.qkv(x)
+ q, k, v = split_qkv(qkv, self.head_dim)
+ q = self.ln_q(q).reshape(q.shape[0], q.shape[1], -1)
+ k = self.ln_k(k).reshape(q.shape[0], q.shape[1], -1)
+ return (q, k, v)
+
+ def post_attention(self, x: torch.Tensor) -> torch.Tensor:
+ assert not self.pre_only
+ x = self.proj(x)
+ return x
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ (q, k, v) = self.pre_attention(x)
+ x = attention(q, k, v, self.num_heads)
+ x = self.post_attention(x)
+ return x
+
+
+class RMSNorm(torch.nn.Module):
+ def __init__(
+ self, dim: int, elementwise_affine: bool = False, eps: float = 1e-6, device=None, dtype=None
+ ):
+ """
+ Initialize the RMSNorm normalization layer.
+ Args:
+ dim (int): The dimension of the input tensor.
+ eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
+ Attributes:
+ eps (float): A small value added to the denominator for numerical stability.
+ weight (nn.Parameter): Learnable scaling parameter.
+ """
+ super().__init__()
+ self.eps = eps
+ self.learnable_scale = elementwise_affine
+ if self.learnable_scale:
+ self.weight = nn.Parameter(torch.empty(dim, device=device, dtype=dtype))
+ else:
+ self.register_parameter("weight", None)
+
+ def _norm(self, x):
+ """
+ Apply the RMSNorm normalization to the input tensor.
+ Args:
+ x (torch.Tensor): The input tensor.
+ Returns:
+ torch.Tensor: The normalized tensor.
+ """
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
+
+ def forward(self, x):
+ """
+ Forward pass through the RMSNorm layer.
+ Args:
+ x (torch.Tensor): The input tensor.
+ Returns:
+ torch.Tensor: The output tensor after applying RMSNorm.
+ """
+ x = self._norm(x)
+ if self.learnable_scale:
+ return x * self.weight.to(device=x.device, dtype=x.dtype)
+ else:
+ return x
+
+
+class SwiGLUFeedForward(nn.Module):
+ def __init__(
+ self,
+ dim: int,
+ hidden_dim: int,
+ multiple_of: int,
+ ffn_dim_multiplier: Optional[float] = None,
+ ):
+ """
+ Initialize the FeedForward module.
+
+ Args:
+ dim (int): Input dimension.
+ hidden_dim (int): Hidden dimension of the feedforward layer.
+ multiple_of (int): Value to ensure hidden dimension is a multiple of this value.
+ ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None.
+
+ Attributes:
+ w1 (ColumnParallelLinear): Linear transformation for the first layer.
+ w2 (RowParallelLinear): Linear transformation for the second layer.
+ w3 (ColumnParallelLinear): Linear transformation for the third layer.
+
+ """
+ super().__init__()
+ hidden_dim = int(2 * hidden_dim / 3)
+ # custom dim factor multiplier
+ if ffn_dim_multiplier is not None:
+ hidden_dim = int(ffn_dim_multiplier * hidden_dim)
+ hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
+
+ self.w1 = nn.Linear(dim, hidden_dim, bias=False)
+ self.w2 = nn.Linear(hidden_dim, dim, bias=False)
+ self.w3 = nn.Linear(dim, hidden_dim, bias=False)
+
+ def forward(self, x):
+ return self.w2(nn.functional.silu(self.w1(x)) * self.w3(x))
+
+
+class DismantledBlock(nn.Module):
+ """A DiT block with gated adaptive layer norm (adaLN) conditioning."""
+
+ ATTENTION_MODES = ("xformers", "torch", "torch-hb", "math", "debug")
+
+ def __init__(
+ self,
+ hidden_size: int,
+ num_heads: int,
+ mlp_ratio: float = 4.0,
+ attn_mode: str = "xformers",
+ qkv_bias: bool = False,
+ pre_only: bool = False,
+ rmsnorm: bool = False,
+ scale_mod_only: bool = False,
+ swiglu: bool = False,
+ qk_norm: Optional[str] = None,
+ dtype=None,
+ device=None,
+ **block_kwargs,
+ ):
+ super().__init__()
+ assert attn_mode in self.ATTENTION_MODES
+ if not rmsnorm:
+ self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
+ else:
+ self.norm1 = RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6)
+ self.attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, attn_mode=attn_mode, pre_only=pre_only, qk_norm=qk_norm, rmsnorm=rmsnorm, dtype=dtype, device=device)
+ if not pre_only:
+ if not rmsnorm:
+ self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
+ else:
+ self.norm2 = RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6)
+ mlp_hidden_dim = int(hidden_size * mlp_ratio)
+ if not pre_only:
+ if not swiglu:
+ self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=nn.GELU(approximate="tanh"), dtype=dtype, device=device)
+ else:
+ self.mlp = SwiGLUFeedForward(dim=hidden_size, hidden_dim=mlp_hidden_dim, multiple_of=256)
+ self.scale_mod_only = scale_mod_only
+ if not scale_mod_only:
+ n_mods = 6 if not pre_only else 2
+ else:
+ n_mods = 4 if not pre_only else 1
+ self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, n_mods * hidden_size, bias=True, dtype=dtype, device=device))
+ self.pre_only = pre_only
+
+ def pre_attention(self, x: torch.Tensor, c: torch.Tensor):
+ assert x is not None, "pre_attention called with None input"
+ if not self.pre_only:
+ if not self.scale_mod_only:
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1)
+ else:
+ shift_msa = None
+ shift_mlp = None
+ scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(4, dim=1)
+ qkv = self.attn.pre_attention(modulate(self.norm1(x), shift_msa, scale_msa))
+ return qkv, (x, gate_msa, shift_mlp, scale_mlp, gate_mlp)
+ else:
+ if not self.scale_mod_only:
+ shift_msa, scale_msa = self.adaLN_modulation(c).chunk(2, dim=1)
+ else:
+ shift_msa = None
+ scale_msa = self.adaLN_modulation(c)
+ qkv = self.attn.pre_attention(modulate(self.norm1(x), shift_msa, scale_msa))
+ return qkv, None
+
+ def post_attention(self, attn, x, gate_msa, shift_mlp, scale_mlp, gate_mlp):
+ assert not self.pre_only
+ x = x + gate_msa.unsqueeze(1) * self.attn.post_attention(attn)
+ x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
+ return x
+
+ def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
+ assert not self.pre_only
+ (q, k, v), intermediates = self.pre_attention(x, c)
+ attn = attention(q, k, v, self.attn.num_heads)
+ return self.post_attention(attn, *intermediates)
+
+
+def block_mixing(context, x, context_block, x_block, c):
+ assert context is not None, "block_mixing called with None context"
+ context_qkv, context_intermediates = context_block.pre_attention(context, c)
+
+ x_qkv, x_intermediates = x_block.pre_attention(x, c)
+
+ o = []
+ for t in range(3):
+ o.append(torch.cat((context_qkv[t], x_qkv[t]), dim=1))
+ q, k, v = tuple(o)
+
+ attn = attention(q, k, v, x_block.attn.num_heads)
+ context_attn, x_attn = (attn[:, : context_qkv[0].shape[1]], attn[:, context_qkv[0].shape[1] :])
+
+ if not context_block.pre_only:
+ context = context_block.post_attention(context_attn, *context_intermediates)
+ else:
+ context = None
+ x = x_block.post_attention(x_attn, *x_intermediates)
+ return context, x
+
+
+class JointBlock(nn.Module):
+ """just a small wrapper to serve as a fsdp unit"""
+
+ def __init__(self, *args, **kwargs):
+ super().__init__()
+ pre_only = kwargs.pop("pre_only")
+ qk_norm = kwargs.pop("qk_norm", None)
+ self.context_block = DismantledBlock(*args, pre_only=pre_only, qk_norm=qk_norm, **kwargs)
+ self.x_block = DismantledBlock(*args, pre_only=False, qk_norm=qk_norm, **kwargs)
+
+ def forward(self, *args, **kwargs):
+ return block_mixing(*args, context_block=self.context_block, x_block=self.x_block, **kwargs)
+
+
+class FinalLayer(nn.Module):
+ """
+ The final layer of DiT.
+ """
+
+ def __init__(self, hidden_size: int, patch_size: int, out_channels: int, total_out_channels: Optional[int] = None, dtype=None, device=None):
+ super().__init__()
+ self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
+ self.linear = (
+ nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
+ if (total_out_channels is None)
+ else nn.Linear(hidden_size, total_out_channels, bias=True, dtype=dtype, device=device)
+ )
+ self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device))
+
+ def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
+ shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
+ x = modulate(self.norm_final(x), shift, scale)
+ x = self.linear(x)
+ return x
+
+
+class MMDiT(nn.Module):
+ """Diffusion model with a Transformer backbone."""
+
+ def __init__(
+ self,
+ input_size: int = 32,
+ patch_size: int = 2,
+ in_channels: int = 4,
+ depth: int = 28,
+ mlp_ratio: float = 4.0,
+ learn_sigma: bool = False,
+ adm_in_channels: Optional[int] = None,
+ context_embedder_config: Optional[Dict] = None,
+ register_length: int = 0,
+ attn_mode: str = "torch",
+ rmsnorm: bool = False,
+ scale_mod_only: bool = False,
+ swiglu: bool = False,
+ out_channels: Optional[int] = None,
+ pos_embed_scaling_factor: Optional[float] = None,
+ pos_embed_offset: Optional[float] = None,
+ pos_embed_max_size: Optional[int] = None,
+ num_patches = None,
+ qk_norm: Optional[str] = None,
+ qkv_bias: bool = True,
+ dtype = None,
+ device = None,
+ ):
+ super().__init__()
+ self.dtype = dtype
+ self.learn_sigma = learn_sigma
+ self.in_channels = in_channels
+ default_out_channels = in_channels * 2 if learn_sigma else in_channels
+ self.out_channels = out_channels if out_channels is not None else default_out_channels
+ self.patch_size = patch_size
+ self.pos_embed_scaling_factor = pos_embed_scaling_factor
+ self.pos_embed_offset = pos_embed_offset
+ self.pos_embed_max_size = pos_embed_max_size
+
+ # apply magic --> this defines a head_size of 64
+ hidden_size = 64 * depth
+ num_heads = depth
+
+ self.num_heads = num_heads
+
+ self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True, strict_img_size=self.pos_embed_max_size is None, dtype=dtype, device=device)
+ self.t_embedder = TimestepEmbedder(hidden_size, dtype=dtype, device=device)
+
+ if adm_in_channels is not None:
+ assert isinstance(adm_in_channels, int)
+ self.y_embedder = VectorEmbedder(adm_in_channels, hidden_size, dtype=dtype, device=device)
+
+ self.context_embedder = nn.Identity()
+ if context_embedder_config is not None:
+ if context_embedder_config["target"] == "torch.nn.Linear":
+ self.context_embedder = nn.Linear(**context_embedder_config["params"], dtype=dtype, device=device)
+
+ self.register_length = register_length
+ if self.register_length > 0:
+ self.register = nn.Parameter(torch.randn(1, register_length, hidden_size, dtype=dtype, device=device))
+
+ # num_patches = self.x_embedder.num_patches
+ # Will use fixed sin-cos embedding:
+ # just use a buffer already
+ if num_patches is not None:
+ self.register_buffer(
+ "pos_embed",
+ torch.zeros(1, num_patches, hidden_size, dtype=dtype, device=device),
+ )
+ else:
+ self.pos_embed = None
+
+ self.joint_blocks = nn.ModuleList(
+ [
+ JointBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, attn_mode=attn_mode, pre_only=i == depth - 1, rmsnorm=rmsnorm, scale_mod_only=scale_mod_only, swiglu=swiglu, qk_norm=qk_norm, dtype=dtype, device=device)
+ for i in range(depth)
+ ]
+ )
+
+ self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels, dtype=dtype, device=device)
+
+ def cropped_pos_embed(self, hw):
+ assert self.pos_embed_max_size is not None
+ p = self.x_embedder.patch_size[0]
+ h, w = hw
+ # patched size
+ h = h // p
+ w = w // p
+ assert h <= self.pos_embed_max_size, (h, self.pos_embed_max_size)
+ assert w <= self.pos_embed_max_size, (w, self.pos_embed_max_size)
+ top = (self.pos_embed_max_size - h) // 2
+ left = (self.pos_embed_max_size - w) // 2
+ spatial_pos_embed = rearrange(
+ self.pos_embed,
+ "1 (h w) c -> 1 h w c",
+ h=self.pos_embed_max_size,
+ w=self.pos_embed_max_size,
+ )
+ spatial_pos_embed = spatial_pos_embed[:, top : top + h, left : left + w, :]
+ spatial_pos_embed = rearrange(spatial_pos_embed, "1 h w c -> 1 (h w) c")
+ return spatial_pos_embed
+
+ def unpatchify(self, x, hw=None):
+ """
+ x: (N, T, patch_size**2 * C)
+ imgs: (N, H, W, C)
+ """
+ c = self.out_channels
+ p = self.x_embedder.patch_size[0]
+ if hw is None:
+ h = w = int(x.shape[1] ** 0.5)
+ else:
+ h, w = hw
+ h = h // p
+ w = w // p
+ assert h * w == x.shape[1]
+
+ x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
+ x = torch.einsum("nhwpqc->nchpwq", x)
+ imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
+ return imgs
+
+ def forward_core_with_concat(self, x: torch.Tensor, c_mod: torch.Tensor, context: Optional[torch.Tensor] = None) -> torch.Tensor:
+ if self.register_length > 0:
+ context = torch.cat((repeat(self.register, "1 ... -> b ...", b=x.shape[0]), context if context is not None else torch.Tensor([]).type_as(x)), 1)
+
+ # context is B, L', D
+ # x is B, L, D
+ for block in self.joint_blocks:
+ context, x = block(context, x, c=c_mod)
+
+ x = self.final_layer(x, c_mod) # (N, T, patch_size ** 2 * out_channels)
+ return x
+
+ def forward(self, x: torch.Tensor, t: torch.Tensor, y: Optional[torch.Tensor] = None, context: Optional[torch.Tensor] = None) -> torch.Tensor:
+ """
+ Forward pass of DiT.
+ x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
+ t: (N,) tensor of diffusion timesteps
+ y: (N,) tensor of class labels
+ """
+ hw = x.shape[-2:]
+ x = self.x_embedder(x) + self.cropped_pos_embed(hw)
+ c = self.t_embedder(t, dtype=x.dtype) # (N, D)
+ if y is not None:
+ y = self.y_embedder(y) # (N, D)
+ c = c + y # (N, D)
+
+ context = self.context_embedder(context)
+
+ x = self.forward_core_with_concat(x, c, context)
+
+ x = self.unpatchify(x, hw=hw) # (N, out_channels, H, W)
+ return x
diff --git a/modules/models/sd3/other_impls.py b/modules/models/sd3/other_impls.py
new file mode 100644
index 00000000000..78c1dc68758
--- /dev/null
+++ b/modules/models/sd3/other_impls.py
@@ -0,0 +1,510 @@
+### This file contains impls for underlying related models (CLIP, T5, etc)
+
+import torch
+import math
+from torch import nn
+from transformers import CLIPTokenizer, T5TokenizerFast
+
+from modules import sd_hijack
+
+
+#################################################################################################
+### Core/Utility
+#################################################################################################
+
+
+class AutocastLinear(nn.Linear):
+ """Same as usual linear layer, but casts its weights to whatever the parameter type is.
+
+ This is different from torch.autocast in a way that float16 layer processing float32 input
+ will return float16 with autocast on, and float32 with this. T5 seems to be fucked
+ if you do it in full float16 (returning almost all zeros in the final output).
+ """
+
+ def forward(self, x):
+ return torch.nn.functional.linear(x, self.weight.to(x.dtype), self.bias.to(x.dtype) if self.bias is not None else None)
+
+
+def attention(q, k, v, heads, mask=None):
+ """Convenience wrapper around a basic attention operation"""
+ b, _, dim_head = q.shape
+ dim_head //= heads
+ q, k, v = [t.view(b, -1, heads, dim_head).transpose(1, 2) for t in (q, k, v)]
+ out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
+ return out.transpose(1, 2).reshape(b, -1, heads * dim_head)
+
+
+class Mlp(nn.Module):
+ """ MLP as used in Vision Transformer, MLP-Mixer and related networks"""
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, bias=True, dtype=None, device=None):
+ super().__init__()
+ out_features = out_features or in_features
+ hidden_features = hidden_features or in_features
+
+ self.fc1 = nn.Linear(in_features, hidden_features, bias=bias, dtype=dtype, device=device)
+ self.act = act_layer
+ self.fc2 = nn.Linear(hidden_features, out_features, bias=bias, dtype=dtype, device=device)
+
+ def forward(self, x):
+ x = self.fc1(x)
+ x = self.act(x)
+ x = self.fc2(x)
+ return x
+
+
+#################################################################################################
+### CLIP
+#################################################################################################
+
+
+class CLIPAttention(torch.nn.Module):
+ def __init__(self, embed_dim, heads, dtype, device):
+ super().__init__()
+ self.heads = heads
+ self.q_proj = nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
+ self.k_proj = nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
+ self.v_proj = nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
+
+ def forward(self, x, mask=None):
+ q = self.q_proj(x)
+ k = self.k_proj(x)
+ v = self.v_proj(x)
+ out = attention(q, k, v, self.heads, mask)
+ return self.out_proj(out)
+
+
+ACTIVATIONS = {
+ "quick_gelu": lambda a: a * torch.sigmoid(1.702 * a),
+ "gelu": torch.nn.functional.gelu,
+}
+
+class CLIPLayer(torch.nn.Module):
+ def __init__(self, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device):
+ super().__init__()
+ self.layer_norm1 = nn.LayerNorm(embed_dim, dtype=dtype, device=device)
+ self.self_attn = CLIPAttention(embed_dim, heads, dtype, device)
+ self.layer_norm2 = nn.LayerNorm(embed_dim, dtype=dtype, device=device)
+ #self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device)
+ self.mlp = Mlp(embed_dim, intermediate_size, embed_dim, act_layer=ACTIVATIONS[intermediate_activation], dtype=dtype, device=device)
+
+ def forward(self, x, mask=None):
+ x += self.self_attn(self.layer_norm1(x), mask)
+ x += self.mlp(self.layer_norm2(x))
+ return x
+
+
+class CLIPEncoder(torch.nn.Module):
+ def __init__(self, num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device):
+ super().__init__()
+ self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device) for i in range(num_layers)])
+
+ def forward(self, x, mask=None, intermediate_output=None):
+ if intermediate_output is not None:
+ if intermediate_output < 0:
+ intermediate_output = len(self.layers) + intermediate_output
+ intermediate = None
+ for i, layer in enumerate(self.layers):
+ x = layer(x, mask)
+ if i == intermediate_output:
+ intermediate = x.clone()
+ return x, intermediate
+
+
+class CLIPEmbeddings(torch.nn.Module):
+ def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None, textual_inversion_key="clip_l"):
+ super().__init__()
+ self.token_embedding = sd_hijack.TextualInversionEmbeddings(vocab_size, embed_dim, dtype=dtype, device=device, textual_inversion_key=textual_inversion_key)
+ self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
+
+ def forward(self, input_tokens):
+ return self.token_embedding(input_tokens) + self.position_embedding.weight
+
+
+class CLIPTextModel_(torch.nn.Module):
+ def __init__(self, config_dict, dtype, device):
+ num_layers = config_dict["num_hidden_layers"]
+ embed_dim = config_dict["hidden_size"]
+ heads = config_dict["num_attention_heads"]
+ intermediate_size = config_dict["intermediate_size"]
+ intermediate_activation = config_dict["hidden_act"]
+ super().__init__()
+ self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device, textual_inversion_key=config_dict.get('textual_inversion_key', 'clip_l'))
+ self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device)
+ self.final_layer_norm = nn.LayerNorm(embed_dim, dtype=dtype, device=device)
+
+ def forward(self, input_tokens, intermediate_output=None, final_layer_norm_intermediate=True):
+ x = self.embeddings(input_tokens)
+ causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)
+ x, i = self.encoder(x, mask=causal_mask, intermediate_output=intermediate_output)
+ x = self.final_layer_norm(x)
+ if i is not None and final_layer_norm_intermediate:
+ i = self.final_layer_norm(i)
+ pooled_output = x[torch.arange(x.shape[0], device=x.device), input_tokens.to(dtype=torch.int, device=x.device).argmax(dim=-1),]
+ return x, i, pooled_output
+
+
+class CLIPTextModel(torch.nn.Module):
+ def __init__(self, config_dict, dtype, device):
+ super().__init__()
+ self.num_layers = config_dict["num_hidden_layers"]
+ self.text_model = CLIPTextModel_(config_dict, dtype, device)
+ embed_dim = config_dict["hidden_size"]
+ self.text_projection = nn.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
+ self.text_projection.weight.copy_(torch.eye(embed_dim))
+ self.dtype = dtype
+
+ def get_input_embeddings(self):
+ return self.text_model.embeddings.token_embedding
+
+ def set_input_embeddings(self, embeddings):
+ self.text_model.embeddings.token_embedding = embeddings
+
+ def forward(self, *args, **kwargs):
+ x = self.text_model(*args, **kwargs)
+ out = self.text_projection(x[2])
+ return (x[0], x[1], out, x[2])
+
+
+class SDTokenizer:
+ def __init__(self, max_length=77, pad_with_end=True, tokenizer=None, has_start_token=True, pad_to_max_length=True, min_length=None):
+ self.tokenizer = tokenizer
+ self.max_length = max_length
+ self.min_length = min_length
+ empty = self.tokenizer('')["input_ids"]
+ if has_start_token:
+ self.tokens_start = 1
+ self.start_token = empty[0]
+ self.end_token = empty[1]
+ else:
+ self.tokens_start = 0
+ self.start_token = None
+ self.end_token = empty[0]
+ self.pad_with_end = pad_with_end
+ self.pad_to_max_length = pad_to_max_length
+ vocab = self.tokenizer.get_vocab()
+ self.inv_vocab = {v: k for k, v in vocab.items()}
+ self.max_word_length = 8
+
+
+ def tokenize_with_weights(self, text:str):
+ """Tokenize the text, with weight values - presume 1.0 for all and ignore other features here. The details aren't relevant for a reference impl, and weights themselves has weak effect on SD3."""
+ if self.pad_with_end:
+ pad_token = self.end_token
+ else:
+ pad_token = 0
+ batch = []
+ if self.start_token is not None:
+ batch.append((self.start_token, 1.0))
+ to_tokenize = text.replace("\n", " ").split(' ')
+ to_tokenize = [x for x in to_tokenize if x != ""]
+ for word in to_tokenize:
+ batch.extend([(t, 1) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]])
+ batch.append((self.end_token, 1.0))
+ if self.pad_to_max_length:
+ batch.extend([(pad_token, 1.0)] * (self.max_length - len(batch)))
+ if self.min_length is not None and len(batch) < self.min_length:
+ batch.extend([(pad_token, 1.0)] * (self.min_length - len(batch)))
+ return [batch]
+
+
+class SDXLClipGTokenizer(SDTokenizer):
+ def __init__(self, tokenizer):
+ super().__init__(pad_with_end=False, tokenizer=tokenizer)
+
+
+class SD3Tokenizer:
+ def __init__(self):
+ clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
+ self.clip_l = SDTokenizer(tokenizer=clip_tokenizer)
+ self.clip_g = SDXLClipGTokenizer(clip_tokenizer)
+ self.t5xxl = T5XXLTokenizer()
+
+ def tokenize_with_weights(self, text:str):
+ out = {}
+ out["g"] = self.clip_g.tokenize_with_weights(text)
+ out["l"] = self.clip_l.tokenize_with_weights(text)
+ out["t5xxl"] = self.t5xxl.tokenize_with_weights(text)
+ return out
+
+
+class ClipTokenWeightEncoder:
+ def encode_token_weights(self, token_weight_pairs):
+ tokens = [a[0] for a in token_weight_pairs[0]]
+ out, pooled = self([tokens])
+ if pooled is not None:
+ first_pooled = pooled[0:1].cpu()
+ else:
+ first_pooled = pooled
+ output = [out[0:1]]
+ return torch.cat(output, dim=-2).cpu(), first_pooled
+
+
+class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
+ """Uses the CLIP transformer encoder for text (from huggingface)"""
+ LAYERS = ["last", "pooled", "hidden"]
+ def __init__(self, device="cpu", max_length=77, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=CLIPTextModel,
+ special_tokens=None, layer_norm_hidden_state=True, return_projected_pooled=True):
+ super().__init__()
+ assert layer in self.LAYERS
+ self.transformer = model_class(textmodel_json_config, dtype, device)
+ self.num_layers = self.transformer.num_layers
+ self.max_length = max_length
+ self.transformer = self.transformer.eval()
+ for param in self.parameters():
+ param.requires_grad = False
+ self.layer = layer
+ self.layer_idx = None
+ self.special_tokens = special_tokens if special_tokens is not None else {"start": 49406, "end": 49407, "pad": 49407}
+ self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
+ self.layer_norm_hidden_state = layer_norm_hidden_state
+ self.return_projected_pooled = return_projected_pooled
+ if layer == "hidden":
+ assert layer_idx is not None
+ assert abs(layer_idx) < self.num_layers
+ self.set_clip_options({"layer": layer_idx})
+ self.options_default = (self.layer, self.layer_idx, self.return_projected_pooled)
+
+ def set_clip_options(self, options):
+ layer_idx = options.get("layer", self.layer_idx)
+ self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled)
+ if layer_idx is None or abs(layer_idx) > self.num_layers:
+ self.layer = "last"
+ else:
+ self.layer = "hidden"
+ self.layer_idx = layer_idx
+
+ def forward(self, tokens):
+ backup_embeds = self.transformer.get_input_embeddings()
+ tokens = torch.asarray(tokens, dtype=torch.int64, device=backup_embeds.weight.device)
+ outputs = self.transformer(tokens, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state)
+ self.transformer.set_input_embeddings(backup_embeds)
+ if self.layer == "last":
+ z = outputs[0]
+ else:
+ z = outputs[1]
+ pooled_output = None
+ if len(outputs) >= 3:
+ if not self.return_projected_pooled and len(outputs) >= 4 and outputs[3] is not None:
+ pooled_output = outputs[3].float()
+ elif outputs[2] is not None:
+ pooled_output = outputs[2].float()
+ return z.float(), pooled_output
+
+
+class SDXLClipG(SDClipModel):
+ """Wraps the CLIP-G model into the SD-CLIP-Model interface"""
+ def __init__(self, config, device="cpu", layer="penultimate", layer_idx=None, dtype=None):
+ if layer == "penultimate":
+ layer="hidden"
+ layer_idx=-2
+ super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=config, dtype=dtype, special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False)
+
+
+class T5XXLModel(SDClipModel):
+ """Wraps the T5-XXL model into the SD-CLIP-Model interface for convenience"""
+ def __init__(self, config, device="cpu", layer="last", layer_idx=None, dtype=None):
+ super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=T5)
+
+
+#################################################################################################
+### T5 implementation, for the T5-XXL text encoder portion, largely pulled from upstream impl
+#################################################################################################
+
+class T5XXLTokenizer(SDTokenizer):
+ """Wraps the T5 Tokenizer from HF into the SDTokenizer interface"""
+ def __init__(self):
+ super().__init__(pad_with_end=False, tokenizer=T5TokenizerFast.from_pretrained("google/t5-v1_1-xxl"), has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=77)
+
+
+class T5LayerNorm(torch.nn.Module):
+ def __init__(self, hidden_size, eps=1e-6, dtype=None, device=None):
+ super().__init__()
+ self.weight = torch.nn.Parameter(torch.ones(hidden_size, dtype=dtype, device=device))
+ self.variance_epsilon = eps
+
+ def forward(self, x):
+ variance = x.pow(2).mean(-1, keepdim=True)
+ x = x * torch.rsqrt(variance + self.variance_epsilon)
+ return self.weight.to(device=x.device, dtype=x.dtype) * x
+
+
+class T5DenseGatedActDense(torch.nn.Module):
+ def __init__(self, model_dim, ff_dim, dtype, device):
+ super().__init__()
+ self.wi_0 = AutocastLinear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
+ self.wi_1 = AutocastLinear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
+ self.wo = AutocastLinear(ff_dim, model_dim, bias=False, dtype=dtype, device=device)
+
+ def forward(self, x):
+ hidden_gelu = torch.nn.functional.gelu(self.wi_0(x), approximate="tanh")
+ hidden_linear = self.wi_1(x)
+ x = hidden_gelu * hidden_linear
+ x = self.wo(x)
+ return x
+
+
+class T5LayerFF(torch.nn.Module):
+ def __init__(self, model_dim, ff_dim, dtype, device):
+ super().__init__()
+ self.DenseReluDense = T5DenseGatedActDense(model_dim, ff_dim, dtype, device)
+ self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device)
+
+ def forward(self, x):
+ forwarded_states = self.layer_norm(x)
+ forwarded_states = self.DenseReluDense(forwarded_states)
+ x += forwarded_states
+ return x
+
+
+class T5Attention(torch.nn.Module):
+ def __init__(self, model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device):
+ super().__init__()
+ # Mesh TensorFlow initialization to avoid scaling before softmax
+ self.q = AutocastLinear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
+ self.k = AutocastLinear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
+ self.v = AutocastLinear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
+ self.o = AutocastLinear(inner_dim, model_dim, bias=False, dtype=dtype, device=device)
+ self.num_heads = num_heads
+ self.relative_attention_bias = None
+ if relative_attention_bias:
+ self.relative_attention_num_buckets = 32
+ self.relative_attention_max_distance = 128
+ self.relative_attention_bias = torch.nn.Embedding(self.relative_attention_num_buckets, self.num_heads, device=device)
+
+ @staticmethod
+ def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
+ """
+ Adapted from Mesh Tensorflow:
+ https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
+
+ Translate relative position to a bucket number for relative attention. The relative position is defined as
+ memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
+ position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
+ small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
+ positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
+ This should allow for more graceful generalization to longer sequences than the model has been trained on
+
+ Args:
+ relative_position: an int32 Tensor
+ bidirectional: a boolean - whether the attention is bidirectional
+ num_buckets: an integer
+ max_distance: an integer
+
+ Returns:
+ a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
+ """
+ relative_buckets = 0
+ if bidirectional:
+ num_buckets //= 2
+ relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
+ relative_position = torch.abs(relative_position)
+ else:
+ relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
+ # now relative_position is in the range [0, inf)
+ # half of the buckets are for exact increments in positions
+ max_exact = num_buckets // 2
+ is_small = relative_position < max_exact
+ # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
+ relative_position_if_large = max_exact + (
+ torch.log(relative_position.float() / max_exact)
+ / math.log(max_distance / max_exact)
+ * (num_buckets - max_exact)
+ ).to(torch.long)
+ relative_position_if_large = torch.min(relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1))
+ relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
+ return relative_buckets
+
+ def compute_bias(self, query_length, key_length, device):
+ """Compute binned relative position bias"""
+ context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
+ memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
+ relative_position = memory_position - context_position # shape (query_length, key_length)
+ relative_position_bucket = self._relative_position_bucket(
+ relative_position, # shape (query_length, key_length)
+ bidirectional=True,
+ num_buckets=self.relative_attention_num_buckets,
+ max_distance=self.relative_attention_max_distance,
+ )
+ values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
+ values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
+ return values
+
+ def forward(self, x, past_bias=None):
+ q = self.q(x)
+ k = self.k(x)
+ v = self.v(x)
+
+ if self.relative_attention_bias is not None:
+ past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device)
+ if past_bias is not None:
+ mask = past_bias
+ else:
+ mask = None
+
+ out = attention(q, k * ((k.shape[-1] / self.num_heads) ** 0.5), v, self.num_heads, mask.to(x.dtype) if mask is not None else None)
+
+ return self.o(out), past_bias
+
+
+class T5LayerSelfAttention(torch.nn.Module):
+ def __init__(self, model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device):
+ super().__init__()
+ self.SelfAttention = T5Attention(model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device)
+ self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device)
+
+ def forward(self, x, past_bias=None):
+ output, past_bias = self.SelfAttention(self.layer_norm(x), past_bias=past_bias)
+ x += output
+ return x, past_bias
+
+
+class T5Block(torch.nn.Module):
+ def __init__(self, model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device):
+ super().__init__()
+ self.layer = torch.nn.ModuleList()
+ self.layer.append(T5LayerSelfAttention(model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device))
+ self.layer.append(T5LayerFF(model_dim, ff_dim, dtype, device))
+
+ def forward(self, x, past_bias=None):
+ x, past_bias = self.layer[0](x, past_bias)
+ x = self.layer[-1](x)
+ return x, past_bias
+
+
+class T5Stack(torch.nn.Module):
+ def __init__(self, num_layers, model_dim, inner_dim, ff_dim, num_heads, vocab_size, dtype, device):
+ super().__init__()
+ self.embed_tokens = torch.nn.Embedding(vocab_size, model_dim, device=device)
+ self.block = torch.nn.ModuleList([T5Block(model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias=(i == 0), dtype=dtype, device=device) for i in range(num_layers)])
+ self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device)
+
+ def forward(self, input_ids, intermediate_output=None, final_layer_norm_intermediate=True):
+ intermediate = None
+ x = self.embed_tokens(input_ids).to(torch.float32) # needs float32 or else T5 returns all zeroes
+ past_bias = None
+ for i, layer in enumerate(self.block):
+ x, past_bias = layer(x, past_bias)
+ if i == intermediate_output:
+ intermediate = x.clone()
+ x = self.final_layer_norm(x)
+ if intermediate is not None and final_layer_norm_intermediate:
+ intermediate = self.final_layer_norm(intermediate)
+ return x, intermediate
+
+
+class T5(torch.nn.Module):
+ def __init__(self, config_dict, dtype, device):
+ super().__init__()
+ self.num_layers = config_dict["num_layers"]
+ self.encoder = T5Stack(self.num_layers, config_dict["d_model"], config_dict["d_model"], config_dict["d_ff"], config_dict["num_heads"], config_dict["vocab_size"], dtype, device)
+ self.dtype = dtype
+
+ def get_input_embeddings(self):
+ return self.encoder.embed_tokens
+
+ def set_input_embeddings(self, embeddings):
+ self.encoder.embed_tokens = embeddings
+
+ def forward(self, *args, **kwargs):
+ return self.encoder(*args, **kwargs)
diff --git a/modules/models/sd3/sd3_cond.py b/modules/models/sd3/sd3_cond.py
new file mode 100644
index 00000000000..325c512d594
--- /dev/null
+++ b/modules/models/sd3/sd3_cond.py
@@ -0,0 +1,222 @@
+import os
+import safetensors
+import torch
+import typing
+
+from transformers import CLIPTokenizer, T5TokenizerFast
+
+from modules import shared, devices, modelloader, sd_hijack_clip, prompt_parser
+from modules.models.sd3.other_impls import SDClipModel, SDXLClipG, T5XXLModel, SD3Tokenizer
+
+
+class SafetensorsMapping(typing.Mapping):
+ def __init__(self, file):
+ self.file = file
+
+ def __len__(self):
+ return len(self.file.keys())
+
+ def __iter__(self):
+ for key in self.file.keys():
+ yield key
+
+ def __getitem__(self, key):
+ return self.file.get_tensor(key)
+
+
+CLIPL_URL = "https://huggingface.co/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/clip_l.safetensors"
+CLIPL_CONFIG = {
+ "hidden_act": "quick_gelu",
+ "hidden_size": 768,
+ "intermediate_size": 3072,
+ "num_attention_heads": 12,
+ "num_hidden_layers": 12,
+}
+
+CLIPG_URL = "https://huggingface.co/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/clip_g.safetensors"
+CLIPG_CONFIG = {
+ "hidden_act": "gelu",
+ "hidden_size": 1280,
+ "intermediate_size": 5120,
+ "num_attention_heads": 20,
+ "num_hidden_layers": 32,
+ "textual_inversion_key": "clip_g",
+}
+
+T5_URL = "https://huggingface.co/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/t5xxl_fp16.safetensors"
+T5_CONFIG = {
+ "d_ff": 10240,
+ "d_model": 4096,
+ "num_heads": 64,
+ "num_layers": 24,
+ "vocab_size": 32128,
+}
+
+
+class Sd3ClipLG(sd_hijack_clip.TextConditionalModel):
+ def __init__(self, clip_l, clip_g):
+ super().__init__()
+
+ self.clip_l = clip_l
+ self.clip_g = clip_g
+
+ self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
+
+ empty = self.tokenizer('')["input_ids"]
+ self.id_start = empty[0]
+ self.id_end = empty[1]
+ self.id_pad = empty[1]
+
+ self.return_pooled = True
+
+ def tokenize(self, texts):
+ return self.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"]
+
+ def encode_with_transformers(self, tokens):
+ tokens_g = tokens.clone()
+
+ for batch_pos in range(tokens_g.shape[0]):
+ index = tokens_g[batch_pos].cpu().tolist().index(self.id_end)
+ tokens_g[batch_pos, index+1:tokens_g.shape[1]] = 0
+
+ l_out, l_pooled = self.clip_l(tokens)
+ g_out, g_pooled = self.clip_g(tokens_g)
+
+ lg_out = torch.cat([l_out, g_out], dim=-1)
+ lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1]))
+
+ vector_out = torch.cat((l_pooled, g_pooled), dim=-1)
+
+ lg_out.pooled = vector_out
+ return lg_out
+
+ def encode_embedding_init_text(self, init_text, nvpt):
+ return torch.zeros((nvpt, 768+1280), device=devices.device) # XXX
+
+
+class Sd3T5(torch.nn.Module):
+ def __init__(self, t5xxl):
+ super().__init__()
+
+ self.t5xxl = t5xxl
+ self.tokenizer = T5TokenizerFast.from_pretrained("google/t5-v1_1-xxl")
+
+ empty = self.tokenizer('', padding='max_length', max_length=2)["input_ids"]
+ self.id_end = empty[0]
+ self.id_pad = empty[1]
+
+ def tokenize(self, texts):
+ return self.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"]
+
+ def tokenize_line(self, line, *, target_token_count=None):
+ if shared.opts.emphasis != "None":
+ parsed = prompt_parser.parse_prompt_attention(line)
+ else:
+ parsed = [[line, 1.0]]
+
+ tokenized = self.tokenize([text for text, _ in parsed])
+
+ tokens = []
+ multipliers = []
+
+ for text_tokens, (text, weight) in zip(tokenized, parsed):
+ if text == 'BREAK' and weight == -1:
+ continue
+
+ tokens += text_tokens
+ multipliers += [weight] * len(text_tokens)
+
+ tokens += [self.id_end]
+ multipliers += [1.0]
+
+ if target_token_count is not None:
+ if len(tokens) < target_token_count:
+ tokens += [self.id_pad] * (target_token_count - len(tokens))
+ multipliers += [1.0] * (target_token_count - len(tokens))
+ else:
+ tokens = tokens[0:target_token_count]
+ multipliers = multipliers[0:target_token_count]
+
+ return tokens, multipliers
+
+ def forward(self, texts, *, token_count):
+ if not self.t5xxl or not shared.opts.sd3_enable_t5:
+ return torch.zeros((len(texts), token_count, 4096), device=devices.device, dtype=devices.dtype)
+
+ tokens_batch = []
+
+ for text in texts:
+ tokens, multipliers = self.tokenize_line(text, target_token_count=token_count)
+ tokens_batch.append(tokens)
+
+ t5_out, t5_pooled = self.t5xxl(tokens_batch)
+
+ return t5_out
+
+ def encode_embedding_init_text(self, init_text, nvpt):
+ return torch.zeros((nvpt, 4096), device=devices.device) # XXX
+
+
+class SD3Cond(torch.nn.Module):
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+
+ self.tokenizer = SD3Tokenizer()
+
+ with torch.no_grad():
+ self.clip_g = SDXLClipG(CLIPG_CONFIG, device="cpu", dtype=devices.dtype)
+ self.clip_l = SDClipModel(layer="hidden", layer_idx=-2, device="cpu", dtype=devices.dtype, layer_norm_hidden_state=False, return_projected_pooled=False, textmodel_json_config=CLIPL_CONFIG)
+
+ if shared.opts.sd3_enable_t5:
+ self.t5xxl = T5XXLModel(T5_CONFIG, device="cpu", dtype=devices.dtype)
+ else:
+ self.t5xxl = None
+
+ self.model_lg = Sd3ClipLG(self.clip_l, self.clip_g)
+ self.model_t5 = Sd3T5(self.t5xxl)
+
+ def forward(self, prompts: list[str]):
+ with devices.without_autocast():
+ lg_out, vector_out = self.model_lg(prompts)
+ t5_out = self.model_t5(prompts, token_count=lg_out.shape[1])
+ lgt_out = torch.cat([lg_out, t5_out], dim=-2)
+
+ return {
+ 'crossattn': lgt_out,
+ 'vector': vector_out,
+ }
+
+ def before_load_weights(self, state_dict):
+ clip_path = os.path.join(shared.models_path, "CLIP")
+
+ if 'text_encoders.clip_g.transformer.text_model.embeddings.position_embedding.weight' not in state_dict:
+ clip_g_file = modelloader.load_file_from_url(CLIPG_URL, model_dir=clip_path, file_name="clip_g.safetensors")
+ with safetensors.safe_open(clip_g_file, framework="pt") as file:
+ self.clip_g.transformer.load_state_dict(SafetensorsMapping(file))
+
+ if 'text_encoders.clip_l.transformer.text_model.embeddings.position_embedding.weight' not in state_dict:
+ clip_l_file = modelloader.load_file_from_url(CLIPL_URL, model_dir=clip_path, file_name="clip_l.safetensors")
+ with safetensors.safe_open(clip_l_file, framework="pt") as file:
+ self.clip_l.transformer.load_state_dict(SafetensorsMapping(file), strict=False)
+
+ if self.t5xxl and 'text_encoders.t5xxl.transformer.encoder.embed_tokens.weight' not in state_dict:
+ t5_file = modelloader.load_file_from_url(T5_URL, model_dir=clip_path, file_name="t5xxl_fp16.safetensors")
+ with safetensors.safe_open(t5_file, framework="pt") as file:
+ self.t5xxl.transformer.load_state_dict(SafetensorsMapping(file), strict=False)
+
+ def encode_embedding_init_text(self, init_text, nvpt):
+ return self.model_lg.encode_embedding_init_text(init_text, nvpt)
+
+ def tokenize(self, texts):
+ return self.model_lg.tokenize(texts)
+
+ def medvram_modules(self):
+ return [self.clip_g, self.clip_l, self.t5xxl]
+
+ def get_token_count(self, text):
+ _, token_count = self.model_lg.process_texts([text])
+
+ return token_count
+
+ def get_target_prompt_token_count(self, token_count):
+ return self.model_lg.get_target_prompt_token_count(token_count)
diff --git a/modules/models/sd3/sd3_impls.py b/modules/models/sd3/sd3_impls.py
new file mode 100644
index 00000000000..59f11b2cbe1
--- /dev/null
+++ b/modules/models/sd3/sd3_impls.py
@@ -0,0 +1,374 @@
+### Impls of the SD3 core diffusion model and VAE
+
+import torch
+import math
+import einops
+from modules.models.sd3.mmdit import MMDiT
+from PIL import Image
+
+
+#################################################################################################
+### MMDiT Model Wrapping
+#################################################################################################
+
+
+class ModelSamplingDiscreteFlow(torch.nn.Module):
+ """Helper for sampler scheduling (ie timestep/sigma calculations) for Discrete Flow models"""
+ def __init__(self, shift=1.0):
+ super().__init__()
+ self.shift = shift
+ timesteps = 1000
+ ts = self.sigma(torch.arange(1, timesteps + 1, 1))
+ self.register_buffer('sigmas', ts)
+
+ @property
+ def sigma_min(self):
+ return self.sigmas[0]
+
+ @property
+ def sigma_max(self):
+ return self.sigmas[-1]
+
+ def timestep(self, sigma):
+ return sigma * 1000
+
+ def sigma(self, timestep: torch.Tensor):
+ timestep = timestep / 1000.0
+ if self.shift == 1.0:
+ return timestep
+ return self.shift * timestep / (1 + (self.shift - 1) * timestep)
+
+ def calculate_denoised(self, sigma, model_output, model_input):
+ sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
+ return model_input - model_output * sigma
+
+ def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
+ return sigma * noise + (1.0 - sigma) * latent_image
+
+
+class BaseModel(torch.nn.Module):
+ """Wrapper around the core MM-DiT model"""
+ def __init__(self, shift=1.0, device=None, dtype=torch.float32, state_dict=None, prefix=""):
+ super().__init__()
+ # Important configuration values can be quickly determined by checking shapes in the source file
+ # Some of these will vary between models (eg 2B vs 8B primarily differ in their depth, but also other details change)
+ patch_size = state_dict[f"{prefix}x_embedder.proj.weight"].shape[2]
+ depth = state_dict[f"{prefix}x_embedder.proj.weight"].shape[0] // 64
+ num_patches = state_dict[f"{prefix}pos_embed"].shape[1]
+ pos_embed_max_size = round(math.sqrt(num_patches))
+ adm_in_channels = state_dict[f"{prefix}y_embedder.mlp.0.weight"].shape[1]
+ context_shape = state_dict[f"{prefix}context_embedder.weight"].shape
+ context_embedder_config = {
+ "target": "torch.nn.Linear",
+ "params": {
+ "in_features": context_shape[1],
+ "out_features": context_shape[0]
+ }
+ }
+ self.diffusion_model = MMDiT(input_size=None, pos_embed_scaling_factor=None, pos_embed_offset=None, pos_embed_max_size=pos_embed_max_size, patch_size=patch_size, in_channels=16, depth=depth, num_patches=num_patches, adm_in_channels=adm_in_channels, context_embedder_config=context_embedder_config, device=device, dtype=dtype)
+ self.model_sampling = ModelSamplingDiscreteFlow(shift=shift)
+ self.depth = depth
+
+ def apply_model(self, x, sigma, c_crossattn=None, y=None):
+ dtype = self.get_dtype()
+ timestep = self.model_sampling.timestep(sigma).float()
+ model_output = self.diffusion_model(x.to(dtype), timestep, context=c_crossattn.to(dtype), y=y.to(dtype)).float()
+ return self.model_sampling.calculate_denoised(sigma, model_output, x)
+
+ def forward(self, *args, **kwargs):
+ return self.apply_model(*args, **kwargs)
+
+ def get_dtype(self):
+ return self.diffusion_model.dtype
+
+
+class CFGDenoiser(torch.nn.Module):
+ """Helper for applying CFG Scaling to diffusion outputs"""
+ def __init__(self, model):
+ super().__init__()
+ self.model = model
+
+ def forward(self, x, timestep, cond, uncond, cond_scale):
+ # Run cond and uncond in a batch together
+ batched = self.model.apply_model(torch.cat([x, x]), torch.cat([timestep, timestep]), c_crossattn=torch.cat([cond["c_crossattn"], uncond["c_crossattn"]]), y=torch.cat([cond["y"], uncond["y"]]))
+ # Then split and apply CFG Scaling
+ pos_out, neg_out = batched.chunk(2)
+ scaled = neg_out + (pos_out - neg_out) * cond_scale
+ return scaled
+
+
+class SD3LatentFormat:
+ """Latents are slightly shifted from center - this class must be called after VAE Decode to correct for the shift"""
+ def __init__(self):
+ self.scale_factor = 1.5305
+ self.shift_factor = 0.0609
+
+ def process_in(self, latent):
+ return (latent - self.shift_factor) * self.scale_factor
+
+ def process_out(self, latent):
+ return (latent / self.scale_factor) + self.shift_factor
+
+ def decode_latent_to_preview(self, x0):
+ """Quick RGB approximate preview of sd3 latents"""
+ factors = torch.tensor([
+ [-0.0645, 0.0177, 0.1052], [ 0.0028, 0.0312, 0.0650],
+ [ 0.1848, 0.0762, 0.0360], [ 0.0944, 0.0360, 0.0889],
+ [ 0.0897, 0.0506, -0.0364], [-0.0020, 0.1203, 0.0284],
+ [ 0.0855, 0.0118, 0.0283], [-0.0539, 0.0658, 0.1047],
+ [-0.0057, 0.0116, 0.0700], [-0.0412, 0.0281, -0.0039],
+ [ 0.1106, 0.1171, 0.1220], [-0.0248, 0.0682, -0.0481],
+ [ 0.0815, 0.0846, 0.1207], [-0.0120, -0.0055, -0.0867],
+ [-0.0749, -0.0634, -0.0456], [-0.1418, -0.1457, -0.1259]
+ ], device="cpu")
+ latent_image = x0[0].permute(1, 2, 0).cpu() @ factors
+
+ latents_ubyte = (((latent_image + 1) / 2)
+ .clamp(0, 1) # change scale from -1..1 to 0..1
+ .mul(0xFF) # to 0..255
+ .byte()).cpu()
+
+ return Image.fromarray(latents_ubyte.numpy())
+
+
+#################################################################################################
+### K-Diffusion Sampling
+#################################################################################################
+
+
+def append_dims(x, target_dims):
+ """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
+ dims_to_append = target_dims - x.ndim
+ return x[(...,) + (None,) * dims_to_append]
+
+
+def to_d(x, sigma, denoised):
+ """Converts a denoiser output to a Karras ODE derivative."""
+ return (x - denoised) / append_dims(sigma, x.ndim)
+
+
+@torch.no_grad()
+@torch.autocast("cuda", dtype=torch.float16)
+def sample_euler(model, x, sigmas, extra_args=None):
+ """Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
+ extra_args = {} if extra_args is None else extra_args
+ s_in = x.new_ones([x.shape[0]])
+ for i in range(len(sigmas) - 1):
+ sigma_hat = sigmas[i]
+ denoised = model(x, sigma_hat * s_in, **extra_args)
+ d = to_d(x, sigma_hat, denoised)
+ dt = sigmas[i + 1] - sigma_hat
+ # Euler method
+ x = x + d * dt
+ return x
+
+
+#################################################################################################
+### VAE
+#################################################################################################
+
+
+def Normalize(in_channels, num_groups=32, dtype=torch.float32, device=None):
+ return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
+
+
+class ResnetBlock(torch.nn.Module):
+ def __init__(self, *, in_channels, out_channels=None, dtype=torch.float32, device=None):
+ super().__init__()
+ self.in_channels = in_channels
+ out_channels = in_channels if out_channels is None else out_channels
+ self.out_channels = out_channels
+
+ self.norm1 = Normalize(in_channels, dtype=dtype, device=device)
+ self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, dtype=dtype, device=device)
+ self.norm2 = Normalize(out_channels, dtype=dtype, device=device)
+ self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, dtype=dtype, device=device)
+ if self.in_channels != self.out_channels:
+ self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, dtype=dtype, device=device)
+ else:
+ self.nin_shortcut = None
+ self.swish = torch.nn.SiLU(inplace=True)
+
+ def forward(self, x):
+ hidden = x
+ hidden = self.norm1(hidden)
+ hidden = self.swish(hidden)
+ hidden = self.conv1(hidden)
+ hidden = self.norm2(hidden)
+ hidden = self.swish(hidden)
+ hidden = self.conv2(hidden)
+ if self.in_channels != self.out_channels:
+ x = self.nin_shortcut(x)
+ return x + hidden
+
+
+class AttnBlock(torch.nn.Module):
+ def __init__(self, in_channels, dtype=torch.float32, device=None):
+ super().__init__()
+ self.norm = Normalize(in_channels, dtype=dtype, device=device)
+ self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0, dtype=dtype, device=device)
+ self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0, dtype=dtype, device=device)
+ self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0, dtype=dtype, device=device)
+ self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0, dtype=dtype, device=device)
+
+ def forward(self, x):
+ hidden = self.norm(x)
+ q = self.q(hidden)
+ k = self.k(hidden)
+ v = self.v(hidden)
+ b, c, h, w = q.shape
+ q, k, v = [einops.rearrange(x, "b c h w -> b 1 (h w) c").contiguous() for x in (q, k, v)]
+ hidden = torch.nn.functional.scaled_dot_product_attention(q, k, v) # scale is dim ** -0.5 per default
+ hidden = einops.rearrange(hidden, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
+ hidden = self.proj_out(hidden)
+ return x + hidden
+
+
+class Downsample(torch.nn.Module):
+ def __init__(self, in_channels, dtype=torch.float32, device=None):
+ super().__init__()
+ self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0, dtype=dtype, device=device)
+
+ def forward(self, x):
+ pad = (0,1,0,1)
+ x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
+ x = self.conv(x)
+ return x
+
+
+class Upsample(torch.nn.Module):
+ def __init__(self, in_channels, dtype=torch.float32, device=None):
+ super().__init__()
+ self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dtype=dtype, device=device)
+
+ def forward(self, x):
+ x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
+ x = self.conv(x)
+ return x
+
+
+class VAEEncoder(torch.nn.Module):
+ def __init__(self, ch=128, ch_mult=(1,2,4,4), num_res_blocks=2, in_channels=3, z_channels=16, dtype=torch.float32, device=None):
+ super().__init__()
+ self.num_resolutions = len(ch_mult)
+ self.num_res_blocks = num_res_blocks
+ # downsampling
+ self.conv_in = torch.nn.Conv2d(in_channels, ch, kernel_size=3, stride=1, padding=1, dtype=dtype, device=device)
+ in_ch_mult = (1,) + tuple(ch_mult)
+ self.in_ch_mult = in_ch_mult
+ self.down = torch.nn.ModuleList()
+ for i_level in range(self.num_resolutions):
+ block = torch.nn.ModuleList()
+ attn = torch.nn.ModuleList()
+ block_in = ch*in_ch_mult[i_level]
+ block_out = ch*ch_mult[i_level]
+ for _ in range(num_res_blocks):
+ block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, dtype=dtype, device=device))
+ block_in = block_out
+ down = torch.nn.Module()
+ down.block = block
+ down.attn = attn
+ if i_level != self.num_resolutions - 1:
+ down.downsample = Downsample(block_in, dtype=dtype, device=device)
+ self.down.append(down)
+ # middle
+ self.mid = torch.nn.Module()
+ self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dtype=dtype, device=device)
+ self.mid.attn_1 = AttnBlock(block_in, dtype=dtype, device=device)
+ self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dtype=dtype, device=device)
+ # end
+ self.norm_out = Normalize(block_in, dtype=dtype, device=device)
+ self.conv_out = torch.nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1, dtype=dtype, device=device)
+ self.swish = torch.nn.SiLU(inplace=True)
+
+ def forward(self, x):
+ # downsampling
+ hs = [self.conv_in(x)]
+ for i_level in range(self.num_resolutions):
+ for i_block in range(self.num_res_blocks):
+ h = self.down[i_level].block[i_block](hs[-1])
+ hs.append(h)
+ if i_level != self.num_resolutions-1:
+ hs.append(self.down[i_level].downsample(hs[-1]))
+ # middle
+ h = hs[-1]
+ h = self.mid.block_1(h)
+ h = self.mid.attn_1(h)
+ h = self.mid.block_2(h)
+ # end
+ h = self.norm_out(h)
+ h = self.swish(h)
+ h = self.conv_out(h)
+ return h
+
+
+class VAEDecoder(torch.nn.Module):
+ def __init__(self, ch=128, out_ch=3, ch_mult=(1, 2, 4, 4), num_res_blocks=2, resolution=256, z_channels=16, dtype=torch.float32, device=None):
+ super().__init__()
+ self.num_resolutions = len(ch_mult)
+ self.num_res_blocks = num_res_blocks
+ block_in = ch * ch_mult[self.num_resolutions - 1]
+ curr_res = resolution // 2 ** (self.num_resolutions - 1)
+ # z to block_in
+ self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1, dtype=dtype, device=device)
+ # middle
+ self.mid = torch.nn.Module()
+ self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dtype=dtype, device=device)
+ self.mid.attn_1 = AttnBlock(block_in, dtype=dtype, device=device)
+ self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dtype=dtype, device=device)
+ # upsampling
+ self.up = torch.nn.ModuleList()
+ for i_level in reversed(range(self.num_resolutions)):
+ block = torch.nn.ModuleList()
+ block_out = ch * ch_mult[i_level]
+ for _ in range(self.num_res_blocks + 1):
+ block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, dtype=dtype, device=device))
+ block_in = block_out
+ up = torch.nn.Module()
+ up.block = block
+ if i_level != 0:
+ up.upsample = Upsample(block_in, dtype=dtype, device=device)
+ curr_res = curr_res * 2
+ self.up.insert(0, up) # prepend to get consistent order
+ # end
+ self.norm_out = Normalize(block_in, dtype=dtype, device=device)
+ self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1, dtype=dtype, device=device)
+ self.swish = torch.nn.SiLU(inplace=True)
+
+ def forward(self, z):
+ # z to block_in
+ hidden = self.conv_in(z)
+ # middle
+ hidden = self.mid.block_1(hidden)
+ hidden = self.mid.attn_1(hidden)
+ hidden = self.mid.block_2(hidden)
+ # upsampling
+ for i_level in reversed(range(self.num_resolutions)):
+ for i_block in range(self.num_res_blocks + 1):
+ hidden = self.up[i_level].block[i_block](hidden)
+ if i_level != 0:
+ hidden = self.up[i_level].upsample(hidden)
+ # end
+ hidden = self.norm_out(hidden)
+ hidden = self.swish(hidden)
+ hidden = self.conv_out(hidden)
+ return hidden
+
+
+class SDVAE(torch.nn.Module):
+ def __init__(self, dtype=torch.float32, device=None):
+ super().__init__()
+ self.encoder = VAEEncoder(dtype=dtype, device=device)
+ self.decoder = VAEDecoder(dtype=dtype, device=device)
+
+ @torch.autocast("cuda", dtype=torch.float16)
+ def decode(self, latent):
+ return self.decoder(latent)
+
+ @torch.autocast("cuda", dtype=torch.float16)
+ def encode(self, image):
+ hidden = self.encoder(image)
+ mean, logvar = torch.chunk(hidden, 2, dim=1)
+ logvar = torch.clamp(logvar, -30.0, 20.0)
+ std = torch.exp(0.5 * logvar)
+ return mean + std * torch.randn_like(mean)
diff --git a/modules/models/sd3/sd3_model.py b/modules/models/sd3/sd3_model.py
new file mode 100644
index 00000000000..37cf85eb36f
--- /dev/null
+++ b/modules/models/sd3/sd3_model.py
@@ -0,0 +1,96 @@
+import contextlib
+
+import torch
+
+import k_diffusion
+from modules.models.sd3.sd3_impls import BaseModel, SDVAE, SD3LatentFormat
+from modules.models.sd3.sd3_cond import SD3Cond
+
+from modules import shared, devices
+
+
+class SD3Denoiser(k_diffusion.external.DiscreteSchedule):
+ def __init__(self, inner_model, sigmas):
+ super().__init__(sigmas, quantize=shared.opts.enable_quantization)
+ self.inner_model = inner_model
+
+ def forward(self, input, sigma, **kwargs):
+ return self.inner_model.apply_model(input, sigma, **kwargs)
+
+
+class SD3Inferencer(torch.nn.Module):
+ def __init__(self, state_dict, shift=3, use_ema=False):
+ super().__init__()
+
+ self.shift = shift
+
+ with torch.no_grad():
+ self.model = BaseModel(shift=shift, state_dict=state_dict, prefix="model.diffusion_model.", device="cpu", dtype=devices.dtype)
+ self.first_stage_model = SDVAE(device="cpu", dtype=devices.dtype_vae)
+ self.first_stage_model.dtype = self.model.diffusion_model.dtype
+
+ self.alphas_cumprod = 1 / (self.model.model_sampling.sigmas ** 2 + 1)
+
+ self.text_encoders = SD3Cond()
+ self.cond_stage_key = 'txt'
+
+ self.parameterization = "eps"
+ self.model.conditioning_key = "crossattn"
+
+ self.latent_format = SD3LatentFormat()
+ self.latent_channels = 16
+
+ @property
+ def cond_stage_model(self):
+ return self.text_encoders
+
+ def before_load_weights(self, state_dict):
+ self.cond_stage_model.before_load_weights(state_dict)
+
+ def ema_scope(self):
+ return contextlib.nullcontext()
+
+ def get_learned_conditioning(self, batch: list[str]):
+ return self.cond_stage_model(batch)
+
+ def apply_model(self, x, t, cond):
+ return self.model(x, t, c_crossattn=cond['crossattn'], y=cond['vector'])
+
+ def decode_first_stage(self, latent):
+ latent = self.latent_format.process_out(latent)
+ return self.first_stage_model.decode(latent)
+
+ def encode_first_stage(self, image):
+ latent = self.first_stage_model.encode(image)
+ return self.latent_format.process_in(latent)
+
+ def get_first_stage_encoding(self, x):
+ return x
+
+ def create_denoiser(self):
+ return SD3Denoiser(self, self.model.model_sampling.sigmas)
+
+ def medvram_fields(self):
+ return [
+ (self, 'first_stage_model'),
+ (self, 'text_encoders'),
+ (self, 'model'),
+ ]
+
+ def add_noise_to_latent(self, x, noise, amount):
+ return x * (1 - amount) + noise * amount
+
+ def fix_dimensions(self, width, height):
+ return width // 16 * 16, height // 16 * 16
+
+ def diffusers_weight_mapping(self):
+ for i in range(self.model.depth):
+ yield f"transformer.transformer_blocks.{i}.attn.to_q", f"diffusion_model_joint_blocks_{i}_x_block_attn_qkv_q_proj"
+ yield f"transformer.transformer_blocks.{i}.attn.to_k", f"diffusion_model_joint_blocks_{i}_x_block_attn_qkv_k_proj"
+ yield f"transformer.transformer_blocks.{i}.attn.to_v", f"diffusion_model_joint_blocks_{i}_x_block_attn_qkv_v_proj"
+ yield f"transformer.transformer_blocks.{i}.attn.to_out.0", f"diffusion_model_joint_blocks_{i}_x_block_attn_proj"
+
+ yield f"transformer.transformer_blocks.{i}.attn.add_q_proj", f"diffusion_model_joint_blocks_{i}_context_block.attn_qkv_q_proj"
+ yield f"transformer.transformer_blocks.{i}.attn.add_k_proj", f"diffusion_model_joint_blocks_{i}_context_block.attn_qkv_k_proj"
+ yield f"transformer.transformer_blocks.{i}.attn.add_v_proj", f"diffusion_model_joint_blocks_{i}_context_block.attn_qkv_v_proj"
+ yield f"transformer.transformer_blocks.{i}.attn.add_out_proj.0", f"diffusion_model_joint_blocks_{i}_context_block_attn_proj"
diff --git a/modules/paths_internal.py b/modules/paths_internal.py
index cf9da45ab43..67521f5cd5d 100644
--- a/modules/paths_internal.py
+++ b/modules/paths_internal.py
@@ -24,11 +24,12 @@
# Parse the --data-dir flag first so we can use it as a base for our other argument default values
parser_pre = argparse.ArgumentParser(add_help=False)
parser_pre.add_argument("--data-dir", type=str, default=os.path.dirname(modules_path), help="base path where all user data is stored", )
+parser_pre.add_argument("--models-dir", type=str, default=None, help="base path where models are stored; overrides --data-dir", )
cmd_opts_pre = parser_pre.parse_known_args()[0]
data_path = cmd_opts_pre.data_dir
-models_path = os.path.join(data_path, "models")
+models_path = cmd_opts_pre.models_dir if cmd_opts_pre.models_dir else os.path.join(data_path, "models")
extensions_dir = os.path.join(data_path, "extensions")
extensions_builtin_dir = os.path.join(script_path, "extensions-builtin")
config_states_dir = os.path.join(script_path, "config_states")
diff --git a/modules/postprocessing.py b/modules/postprocessing.py
index 812cbccae9a..a413d1027c7 100644
--- a/modules/postprocessing.py
+++ b/modules/postprocessing.py
@@ -51,7 +51,7 @@ def get_images(extras_mode, image, image_folder, input_dir):
shared.state.textinfo = name
shared.state.skipped = False
- if shared.state.interrupted:
+ if shared.state.interrupted or shared.state.stopping_generation:
break
if isinstance(image_placeholder, str):
@@ -62,11 +62,13 @@ def get_images(extras_mode, image, image_folder, input_dir):
else:
image_data = image_placeholder
+ image_data = image_data if image_data.mode in ("RGBA", "RGB") else image_data.convert("RGB")
+
parameters, existing_pnginfo = images.read_info_from_image(image_data)
if parameters:
existing_pnginfo["parameters"] = parameters
- initial_pp = scripts_postprocessing.PostprocessedImage(image_data if image_data.mode in ("RGBA", "RGB") else image_data.convert("RGB"))
+ initial_pp = scripts_postprocessing.PostprocessedImage(image_data)
scripts.scripts_postproc.run(initial_pp, args)
diff --git a/modules/processing.py b/modules/processing.py
index 3c5e44a1198..9a30c6b3d3c 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -16,7 +16,7 @@
from typing import Any
import modules.sd_hijack
-from modules import devices, prompt_parser, masking, sd_samplers, lowvram, infotext_utils, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors, rng
+from modules import devices, prompt_parser, masking, sd_samplers, lowvram, infotext_utils, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors, rng, profiling
from modules.rng import slerp # noqa: F401
from modules.sd_hijack import model_hijack
from modules.sd_samplers_common import images_tensor_to_samples, decode_first_stage, approximation_indexes
@@ -116,20 +116,17 @@ def txt2img_image_conditioning(sd_model, x, width, height):
return x.new_zeros(x.shape[0], 2*sd_model.noise_augmentor.time_embed.dim, dtype=x.dtype, device=x.device)
else:
- sd = sd_model.model.state_dict()
- diffusion_model_input = sd.get('diffusion_model.input_blocks.0.0.weight', None)
- if diffusion_model_input is not None:
- if diffusion_model_input.shape[1] == 9:
- # The "masked-image" in this case will just be all 0.5 since the entire image is masked.
- image_conditioning = torch.ones(x.shape[0], 3, height, width, device=x.device) * 0.5
- image_conditioning = images_tensor_to_samples(image_conditioning,
- approximation_indexes.get(opts.sd_vae_encode_method))
+ if sd_model.is_sdxl_inpaint:
+ # The "masked-image" in this case will just be all 0.5 since the entire image is masked.
+ image_conditioning = torch.ones(x.shape[0], 3, height, width, device=x.device) * 0.5
+ image_conditioning = images_tensor_to_samples(image_conditioning,
+ approximation_indexes.get(opts.sd_vae_encode_method))
- # Add the fake full 1s mask to the first dimension.
- image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
- image_conditioning = image_conditioning.to(x.dtype)
+ # Add the fake full 1s mask to the first dimension.
+ image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
+ image_conditioning = image_conditioning.to(x.dtype)
- return image_conditioning
+ return image_conditioning
# Dummy zero conditioning if we're not using inpainting or unclip models.
# Still takes up a bit of memory, but no encoder call.
@@ -239,11 +236,6 @@ def __post_init__(self):
self.styles = []
self.sampler_noise_scheduler_override = None
- self.s_min_uncond = self.s_min_uncond if self.s_min_uncond is not None else opts.s_min_uncond
- self.s_churn = self.s_churn if self.s_churn is not None else opts.s_churn
- self.s_tmin = self.s_tmin if self.s_tmin is not None else opts.s_tmin
- self.s_tmax = (self.s_tmax if self.s_tmax is not None else opts.s_tmax) or float('inf')
- self.s_noise = self.s_noise if self.s_noise is not None else opts.s_noise
self.extra_generation_params = self.extra_generation_params or {}
self.override_settings = self.override_settings or {}
@@ -260,6 +252,13 @@ def __post_init__(self):
self.cached_uc = StableDiffusionProcessing.cached_uc
self.cached_c = StableDiffusionProcessing.cached_c
+ def fill_fields_from_opts(self):
+ self.s_min_uncond = self.s_min_uncond if self.s_min_uncond is not None else opts.s_min_uncond
+ self.s_churn = self.s_churn if self.s_churn is not None else opts.s_churn
+ self.s_tmin = self.s_tmin if self.s_tmin is not None else opts.s_tmin
+ self.s_tmax = (self.s_tmax if self.s_tmax is not None else opts.s_tmax) or float('inf')
+ self.s_noise = self.s_noise if self.s_noise is not None else opts.s_noise
+
@property
def sd_model(self):
return shared.sd_model
@@ -391,11 +390,8 @@ def img2img_image_conditioning(self, source_image, latent_image, image_mask=None
if self.sampler.conditioning_key == "crossattn-adm":
return self.unclip_image_conditioning(source_image)
- sd = self.sampler.model_wrap.inner_model.model.state_dict()
- diffusion_model_input = sd.get('diffusion_model.input_blocks.0.0.weight', None)
- if diffusion_model_input is not None:
- if diffusion_model_input.shape[1] == 9:
- return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
+ if self.sampler.model_wrap.inner_model.is_sdxl_inpaint:
+ return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
# Dummy zero conditioning if we're not using inpainting or depth model.
return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
@@ -570,7 +566,7 @@ def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="",
self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
self.all_seeds = all_seeds or p.all_seeds or [self.seed]
self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
- self.infotexts = infotexts or [info]
+ self.infotexts = infotexts or [info] * len(images_list)
self.version = program_version()
def js(self):
@@ -630,6 +626,9 @@ class DecodedSamples(list):
def decode_latent_batch(model, batch, target_device=None, check_for_nans=False):
samples = DecodedSamples()
+ if check_for_nans:
+ devices.test_for_nans(batch, "unet")
+
for i in range(batch.shape[0]):
sample = decode_first_stage(model, batch[i:i + 1])[0]
@@ -795,7 +794,6 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr,
"Init image hash": getattr(p, 'init_img_hash', None),
"RNG": opts.randn_source if opts.randn_source != "GPU" else None,
- "NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
"Tiling": "True" if p.tiling else None,
**p.extra_generation_params,
"Version": program_version() if opts.add_version_to_infotext else None,
@@ -844,7 +842,11 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
sd_models.apply_token_merging(p.sd_model, p.get_token_merging_ratio())
- res = process_images_inner(p)
+ # backwards compatibility, fix sampler and scheduler if invalid
+ sd_samplers.fix_p_invalid_sampler_and_scheduler(p)
+
+ with profiling.Profiler():
+ res = process_images_inner(p)
finally:
sd_models.apply_token_merging(p.sd_model, 0)
@@ -884,6 +886,9 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if p.refiner_checkpoint_info is None:
raise Exception(f'Could not find checkpoint with name {p.refiner_checkpoint}')
+ if hasattr(shared.sd_model, 'fix_dimensions'):
+ p.width, p.height = shared.sd_model.fix_dimensions(p.width, p.height)
+
p.sd_model_name = shared.sd_model.sd_checkpoint_info.name_for_extra
p.sd_model_hash = shared.sd_model.sd_model_hash
p.sd_vae_name = sd_vae.get_loaded_vae_name()
@@ -892,6 +897,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
modules.sd_hijack.model_hijack.apply_circular(p.tiling)
modules.sd_hijack.model_hijack.clear_comments()
+ p.fill_fields_from_opts()
p.setup_prompts()
if isinstance(seed, list):
@@ -1033,7 +1039,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
p.seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
p.subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
- p.rng = rng.ImageRNG((opt_C, p.height // opt_f, p.width // opt_f), p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w)
+ latent_channels = getattr(shared.sd_model, 'latent_channels', opt_C)
+ p.rng = rng.ImageRNG((latent_channels, p.height // opt_f, p.width // opt_f), p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w)
if p.scripts is not None:
p.scripts.before_process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
@@ -1082,6 +1089,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if getattr(samples_ddim, 'already_decoded', False):
x_samples_ddim = samples_ddim
else:
+ devices.test_for_nans(samples_ddim, "unet")
+
if opts.sd_vae_decode_method != 'Full':
p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method
x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True)
@@ -1419,6 +1428,15 @@ def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subs
# here we generate an image normally
x = self.rng.next()
+ if self.scripts is not None:
+ self.scripts.process_before_every_sampling(
+ p=self,
+ x=x,
+ noise=x,
+ c=conditioning,
+ uc=unconditional_conditioning
+ )
+
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
del x
@@ -1519,6 +1537,13 @@ def save_intermediate(image, index):
if self.scripts is not None:
self.scripts.before_hr(self)
+ self.scripts.process_before_every_sampling(
+ p=self,
+ x=samples,
+ noise=noise,
+ c=self.hr_c,
+ uc=self.hr_uc,
+ )
samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
@@ -1809,10 +1834,10 @@ def init(self, all_prompts, all_seeds, all_subseeds):
latmask = latmask[0]
if self.mask_round:
latmask = np.around(latmask)
- latmask = np.tile(latmask[None], (4, 1, 1))
+ latmask = np.tile(latmask[None], (self.init_latent.shape[1], 1, 1))
- self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)
- self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype)
+ self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(devices.dtype)
+ self.nmask = torch.asarray(latmask).to(shared.device).type(devices.dtype)
# this needs to be fixed to be done in sample() using actual seeds for batches
if self.inpainting_fill == 2:
@@ -1832,6 +1857,14 @@ def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subs
self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier
x *= self.initial_noise_multiplier
+ if self.scripts is not None:
+ self.scripts.process_before_every_sampling(
+ p=self,
+ x=self.init_latent,
+ noise=x,
+ c=conditioning,
+ uc=unconditional_conditioning
+ )
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
if self.mask is not None:
diff --git a/modules/profiling.py b/modules/profiling.py
new file mode 100644
index 00000000000..95b59f71a20
--- /dev/null
+++ b/modules/profiling.py
@@ -0,0 +1,46 @@
+import torch
+
+from modules import shared, ui_gradio_extensions
+
+
+class Profiler:
+ def __init__(self):
+ if not shared.opts.profiling_enable:
+ self.profiler = None
+ return
+
+ activities = []
+ if "CPU" in shared.opts.profiling_activities:
+ activities.append(torch.profiler.ProfilerActivity.CPU)
+ if "CUDA" in shared.opts.profiling_activities:
+ activities.append(torch.profiler.ProfilerActivity.CUDA)
+
+ if not activities:
+ self.profiler = None
+ return
+
+ self.profiler = torch.profiler.profile(
+ activities=activities,
+ record_shapes=shared.opts.profiling_record_shapes,
+ profile_memory=shared.opts.profiling_profile_memory,
+ with_stack=shared.opts.profiling_with_stack
+ )
+
+ def __enter__(self):
+ if self.profiler:
+ self.profiler.__enter__()
+
+ return self
+
+ def __exit__(self, exc_type, exc, exc_tb):
+ if self.profiler:
+ shared.state.textinfo = "Finishing profile..."
+
+ self.profiler.__exit__(exc_type, exc, exc_tb)
+
+ self.profiler.export_chrome_trace(shared.opts.profiling_filename)
+
+
+def webpath():
+ return ui_gradio_extensions.webpath(shared.opts.profiling_filename)
+
diff --git a/modules/prompt_parser.py b/modules/prompt_parser.py
index cba1345545d..4e393d2866f 100644
--- a/modules/prompt_parser.py
+++ b/modules/prompt_parser.py
@@ -268,7 +268,7 @@ def get_multicond_learned_conditioning(model, prompts, steps, hires_steps=None,
class DictWithShape(dict):
- def __init__(self, x, shape):
+ def __init__(self, x, shape=None):
super().__init__()
self.update(x)
diff --git a/modules/rocm.py b/modules/rocm.py
new file mode 100644
index 00000000000..0fa84a9446e
--- /dev/null
+++ b/modules/rocm.py
@@ -0,0 +1,106 @@
+import os
+import sys
+import shutil
+import subprocess
+from typing import Union, List
+
+
+def resolve_link(path_: str) -> str:
+ if not os.path.islink(path_):
+ return path_
+ return resolve_link(os.readlink(path_))
+
+
+def dirname(path_: str, r: int = 1) -> str:
+ for _ in range(0, r):
+ path_ = os.path.dirname(path_)
+ return path_
+
+
+def spawn(command: str) -> str:
+ process = subprocess.run(command, shell=True, check=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
+ return process.stdout.decode(encoding="utf8", errors="ignore")
+
+
+if sys.platform == "win32":
+ def find() -> Union[str, None]:
+ hip_path = shutil.which("hipconfig")
+ if hip_path is not None:
+ return dirname(resolve_link(hip_path), 2)
+
+ hip_path = os.environ.get("HIP_PATH", None)
+ if hip_path is not None:
+ return hip_path
+
+ program_files = os.environ.get('ProgramFiles', r'C:\Program Files')
+ hip_path = rf'{program_files}\AMD\ROCm'
+ if not os.path.exists(hip_path):
+ return None
+
+ class Version:
+ major: int
+ minor: int
+
+ def __init__(self, string: str):
+ self.major, self.minor = [int(v) for v in string.strip().split(".")]
+
+ def __gt__(self, other):
+ return self.major * 10 + other.minor > other.major * 10 + other.minor
+
+ def __str__(self):
+ return f"{self.major}.{self.minor}"
+
+ latest = None
+ versions = os.listdir(hip_path)
+ for s in versions:
+ item = None
+ try:
+ item = Version(s)
+ except Exception:
+ continue
+ if latest is None:
+ latest = item
+ continue
+ if item > latest:
+ latest = item
+
+ if latest is None:
+ return None
+
+ return os.path.join(hip_path, str(latest))
+
+ def get_version() -> str: # cannot just run hipconfig as it requires Perl installed on Windows.
+ return os.path.basename(path)
+
+ def get_agents() -> List[str]:
+ return [x.split(' ')[-1].strip() for x in spawn("hipinfo").split("\n") if x.startswith('gcnArchName:')]
+
+ is_wsl: bool = False
+else:
+ def find() -> Union[str, None]:
+ rocm_path = shutil.which("hipconfig")
+ if rocm_path is not None:
+ return dirname(resolve_link(rocm_path), 2)
+ if not os.path.exists("/opt/rocm"):
+ return None
+ return resolve_link("/opt/rocm")
+
+ def get_version() -> str:
+ arr = spawn(f"{os.path.join(path, 'bin', 'hipconfig')} --version").split(".")
+ return f'{arr[0]}.{arr[1]}' if len(arr) >= 2 else None
+
+ def get_agents() -> List[str]:
+ if is_wsl: # WSL does not have 'rocm_agent_enumerator'
+ agents = spawn("rocminfo").split("\n")
+ return [x.strip().split(" ")[-1] for x in agents if x.startswith(' Name:') and "CPU" not in x]
+ else:
+ agents = spawn("rocm_agent_enumerator").split("\n")
+ return [x for x in agents if x and x != 'gfx000']
+
+ is_wsl: bool = os.environ.get('WSL_DISTRO_NAME', None) is not None
+path = find()
+is_installed = False
+version = None
+if path is not None:
+ is_installed = True
+ version = get_version()
diff --git a/modules/safe.py b/modules/safe.py
index b1d08a7928e..af019ffd980 100644
--- a/modules/safe.py
+++ b/modules/safe.py
@@ -64,8 +64,8 @@ def find_class(self, module, name):
raise Exception(f"global '{module}/{name}' is forbidden")
-# Regular expression that accepts 'dirname/version', 'dirname/data.pkl', and 'dirname/data/'
-allowed_zip_names_re = re.compile(r"^([^/]+)/((data/\d+)|version|(data\.pkl))$")
+# Regular expression that accepts 'dirname/version', 'dirname/byteorder', 'dirname/data.pkl', '.data/serialization_id', and 'dirname/data/'
+allowed_zip_names_re = re.compile(r"^([^/]+)/((data/\d+)|version|byteorder|.data/serialization_id|(data\.pkl))$")
data_pkl_re = re.compile(r"^([^/]+)/data\.pkl$")
def check_zip_filenames(filename, names):
diff --git a/modules/scripts.py b/modules/scripts.py
index 70ccfbe46b1..8eca396b140 100644
--- a/modules/scripts.py
+++ b/modules/scripts.py
@@ -187,6 +187,13 @@ def after_extra_networks_activate(self, p, *args, **kwargs):
"""
pass
+ def process_before_every_sampling(self, p, *args, **kwargs):
+ """
+ Similar to process(), called before every sampling.
+ If you use high-res fix, this will be called two times.
+ """
+ pass
+
def process_batch(self, p, *args, **kwargs):
"""
Same as process(), but called for every batch.
@@ -826,6 +833,14 @@ def process(self, p):
except Exception:
errors.report(f"Error running process: {script.filename}", exc_info=True)
+ def process_before_every_sampling(self, p, **kwargs):
+ for script in self.ordered_scripts('process_before_every_sampling'):
+ try:
+ script_args = p.script_args[script.args_from:script.args_to]
+ script.process_before_every_sampling(p, *script_args, **kwargs)
+ except Exception:
+ errors.report(f"Error running process_before_every_sampling: {script.filename}", exc_info=True)
+
def before_process_batch(self, p, **kwargs):
for script in self.ordered_scripts('before_process_batch'):
try:
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py
index e139d9964cb..0de83054186 100644
--- a/modules/sd_hijack.py
+++ b/modules/sd_hijack.py
@@ -325,7 +325,10 @@ def get_prompt_lengths(self, text):
if self.clip is None:
return "-", "-"
- _, token_count = self.clip.process_texts([text])
+ if hasattr(self.clip, 'get_token_count'):
+ token_count = self.clip.get_token_count(text)
+ else:
+ _, token_count = self.clip.process_texts([text])
return token_count, self.clip.get_target_prompt_token_count(token_count)
@@ -356,13 +359,28 @@ def forward(self, input_ids):
vec = embedding.vec[self.textual_inversion_key] if isinstance(embedding.vec, dict) else embedding.vec
emb = devices.cond_cast_unet(vec)
emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0])
- tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]])
+ tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]]).to(dtype=inputs_embeds.dtype)
vecs.append(tensor)
return torch.stack(vecs)
+class TextualInversionEmbeddings(torch.nn.Embedding):
+ def __init__(self, num_embeddings: int, embedding_dim: int, textual_inversion_key='clip_l', **kwargs):
+ super().__init__(num_embeddings, embedding_dim, **kwargs)
+
+ self.embeddings = model_hijack
+ self.textual_inversion_key = textual_inversion_key
+
+ @property
+ def wrapped(self):
+ return super().forward
+
+ def forward(self, input_ids):
+ return EmbeddingsWithFixes.forward(self, input_ids)
+
+
def add_circular_option_to_conv_2d():
conv2d_constructor = torch.nn.Conv2d.__init__
diff --git a/modules/sd_hijack_clip.py b/modules/sd_hijack_clip.py
index 6ef10ac7cd8..a479148fc21 100644
--- a/modules/sd_hijack_clip.py
+++ b/modules/sd_hijack_clip.py
@@ -27,24 +27,21 @@ def __init__(self):
are applied by sd_hijack.EmbeddingsWithFixes's forward function."""
-class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
- """A pytorch module that is a wrapper for FrozenCLIPEmbedder module. it enhances FrozenCLIPEmbedder, making it possible to
- have unlimited prompt length and assign weights to tokens in prompt.
- """
-
- def __init__(self, wrapped, hijack):
+class TextConditionalModel(torch.nn.Module):
+ def __init__(self):
super().__init__()
- self.wrapped = wrapped
- """Original FrozenCLIPEmbedder module; can also be FrozenOpenCLIPEmbedder or xlmr.BertSeriesModelWithTransformation,
- depending on model."""
-
- self.hijack: sd_hijack.StableDiffusionModelHijack = hijack
+ self.hijack = sd_hijack.model_hijack
self.chunk_length = 75
- self.is_trainable = getattr(wrapped, 'is_trainable', False)
- self.input_key = getattr(wrapped, 'input_key', 'txt')
- self.legacy_ucg_val = None
+ self.is_trainable = False
+ self.input_key = 'txt'
+ self.return_pooled = False
+
+ self.comma_token = None
+ self.id_start = None
+ self.id_end = None
+ self.id_pad = None
def empty_chunk(self):
"""creates an empty PromptChunk and returns it"""
@@ -210,10 +207,6 @@ def forward(self, texts):
is when you do prompt editing: "a picture of a [cat:dog:0.4] eating ice cream"
"""
- if opts.use_old_emphasis_implementation:
- import modules.sd_hijack_clip_old
- return modules.sd_hijack_clip_old.forward_old(self, texts)
-
batch_chunks, token_count = self.process_texts(texts)
used_embeddings = {}
@@ -252,7 +245,7 @@ def forward(self, texts):
if any(x for x in texts if "(" in x or "[" in x) and opts.emphasis != "Original":
self.hijack.extra_generation_params["Emphasis"] = opts.emphasis
- if getattr(self.wrapped, 'return_pooled', False):
+ if self.return_pooled:
return torch.hstack(zs), zs[0].pooled
else:
return torch.hstack(zs)
@@ -292,6 +285,34 @@ def process_tokens(self, remade_batch_tokens, batch_multipliers):
return z
+class FrozenCLIPEmbedderWithCustomWordsBase(TextConditionalModel):
+ """A pytorch module that is a wrapper for FrozenCLIPEmbedder module. it enhances FrozenCLIPEmbedder, making it possible to
+ have unlimited prompt length and assign weights to tokens in prompt.
+ """
+
+ def __init__(self, wrapped, hijack):
+ super().__init__()
+
+ self.hijack = hijack
+
+ self.wrapped = wrapped
+ """Original FrozenCLIPEmbedder module; can also be FrozenOpenCLIPEmbedder or xlmr.BertSeriesModelWithTransformation,
+ depending on model."""
+
+ self.is_trainable = getattr(wrapped, 'is_trainable', False)
+ self.input_key = getattr(wrapped, 'input_key', 'txt')
+ self.return_pooled = getattr(self.wrapped, 'return_pooled', False)
+
+ self.legacy_ucg_val = None # for sgm codebase
+
+ def forward(self, texts):
+ if opts.use_old_emphasis_implementation:
+ import modules.sd_hijack_clip_old
+ return modules.sd_hijack_clip_old.forward_old(self, texts)
+
+ return super().forward(texts)
+
+
class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase):
def __init__(self, wrapped, hijack):
super().__init__(wrapped, hijack)
@@ -353,7 +374,9 @@ def __init__(self, wrapped, hijack):
def encode_with_transformers(self, tokens):
outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=self.wrapped.layer == "hidden")
- if self.wrapped.layer == "last":
+ if opts.sdxl_clip_l_skip is True:
+ z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers]
+ elif self.wrapped.layer == "last":
z = outputs.last_hidden_state
else:
z = outputs.hidden_states[self.wrapped.layer_idx]
diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py
index e244dbd6463..0918ca133ba 100644
--- a/modules/sd_hijack_optimizations.py
+++ b/modules/sd_hijack_optimizations.py
@@ -498,7 +498,8 @@ def xformers_attention_forward(self, x, context=None, mask=None, **kwargs):
k_in = self.to_k(context_k)
v_in = self.to_v(context_v)
- q, k, v = (rearrange(t, 'b n (h d) -> b n h d', h=h) for t in (q_in, k_in, v_in))
+ q, k, v = (t.reshape(t.shape[0], t.shape[1], h, -1) for t in (q_in, k_in, v_in))
+
del q_in, k_in, v_in
dtype = q.dtype
@@ -509,7 +510,8 @@ def xformers_attention_forward(self, x, context=None, mask=None, **kwargs):
out = out.to(dtype)
- out = rearrange(out, 'b n h d -> b n (h d)', h=h)
+ b, n, h, d = out.shape
+ out = out.reshape(b, n, h * d)
return self.to_out(out)
diff --git a/modules/sd_hijack_unet.py b/modules/sd_hijack_unet.py
index 2101f1a0415..b4f03b138a4 100644
--- a/modules/sd_hijack_unet.py
+++ b/modules/sd_hijack_unet.py
@@ -1,5 +1,7 @@
import torch
from packaging import version
+from einops import repeat
+import math
from modules import devices
from modules.sd_hijack_utils import CondFunc
@@ -36,7 +38,7 @@ def cat(self, tensors, *args, **kwargs):
# Below are monkey patches to enable upcasting a float16 UNet for float32 sampling
def apply_model(orig_func, self, x_noisy, t, cond, **kwargs):
-
+ """Always make sure inputs to unet are in correct dtype."""
if isinstance(cond, dict):
for y in cond.keys():
if isinstance(cond[y], list):
@@ -45,7 +47,59 @@ def apply_model(orig_func, self, x_noisy, t, cond, **kwargs):
cond[y] = cond[y].to(devices.dtype_unet) if isinstance(cond[y], torch.Tensor) else cond[y]
with devices.autocast():
- return orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs).float()
+ result = orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs)
+ if devices.unet_needs_upcast:
+ return result.float()
+ else:
+ return result
+
+
+# Monkey patch to create timestep embed tensor on device, avoiding a block.
+def timestep_embedding(_, timesteps, dim, max_period=10000, repeat_only=False):
+ """
+ Create sinusoidal timestep embeddings.
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
+ These may be fractional.
+ :param dim: the dimension of the output.
+ :param max_period: controls the minimum frequency of the embeddings.
+ :return: an [N x dim] Tensor of positional embeddings.
+ """
+ if not repeat_only:
+ half = dim // 2
+ freqs = torch.exp(
+ -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device) / half
+ )
+ args = timesteps[:, None].float() * freqs[None]
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
+ if dim % 2:
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
+ else:
+ embedding = repeat(timesteps, 'b -> b d', d=dim)
+ return embedding
+
+
+# Monkey patch to SpatialTransformer removing unnecessary contiguous calls.
+# Prevents a lot of unnecessary aten::copy_ calls
+def spatial_transformer_forward(_, self, x: torch.Tensor, context=None):
+ # note: if no context is given, cross-attention defaults to self-attention
+ if not isinstance(context, list):
+ context = [context]
+ b, c, h, w = x.shape
+ x_in = x
+ x = self.norm(x)
+ if not self.use_linear:
+ x = self.proj_in(x)
+ x = x.permute(0, 2, 3, 1).reshape(b, h * w, c)
+ if self.use_linear:
+ x = self.proj_in(x)
+ for i, block in enumerate(self.transformer_blocks):
+ x = block(x, context=context[i])
+ if self.use_linear:
+ x = self.proj_out(x)
+ x = x.view(b, h, w, c).permute(0, 3, 1, 2)
+ if not self.use_linear:
+ x = self.proj_out(x)
+ return x + x_in
class GELUHijack(torch.nn.GELU, torch.nn.Module):
@@ -64,12 +118,15 @@ def hijack_ddpm_edit():
if not ddpm_edit_hijack:
CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
- ddpm_edit_hijack = CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
+ ddpm_edit_hijack = CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.apply_model', apply_model)
unet_needs_upcast = lambda *args, **kwargs: devices.unet_needs_upcast
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
+CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding)
+CondFunc('ldm.modules.attention.SpatialTransformer.forward', spatial_transformer_forward)
CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)
+
if version.parse(torch.__version__) <= version.parse("1.13.2") or torch.cuda.is_available():
CondFunc('ldm.modules.diffusionmodules.util.GroupNorm32.forward', lambda orig_func, self, *args, **kwargs: orig_func(self.float(), *args, **kwargs), unet_needs_upcast)
CondFunc('ldm.modules.attention.GEGLU.forward', lambda orig_func, self, x: orig_func(self.float(), x.float()).to(devices.dtype_unet), unet_needs_upcast)
@@ -81,5 +138,17 @@ def hijack_ddpm_edit():
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.get_first_stage_encoding', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).float(), first_stage_cond)
-CondFunc('sgm.modules.diffusionmodules.wrappers.OpenAIWrapper.forward', apply_model, unet_needs_upcast)
-CondFunc('sgm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)
+CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model)
+CondFunc('sgm.modules.diffusionmodules.wrappers.OpenAIWrapper.forward', apply_model)
+
+
+def timestep_embedding_cast_result(orig_func, timesteps, *args, **kwargs):
+ if devices.unet_needs_upcast and timesteps.dtype == torch.int64:
+ dtype = torch.float32
+ else:
+ dtype = devices.dtype_unet
+ return orig_func(timesteps, *args, **kwargs).to(dtype=dtype)
+
+
+CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding_cast_result)
+CondFunc('sgm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding_cast_result)
diff --git a/modules/sd_hijack_utils.py b/modules/sd_hijack_utils.py
index 79bf6e46862..546f2eda4ec 100644
--- a/modules/sd_hijack_utils.py
+++ b/modules/sd_hijack_utils.py
@@ -1,7 +1,11 @@
import importlib
+
+always_true_func = lambda *args, **kwargs: True
+
+
class CondFunc:
- def __new__(cls, orig_func, sub_func, cond_func):
+ def __new__(cls, orig_func, sub_func, cond_func=always_true_func):
self = super(CondFunc, cls).__new__(cls)
if isinstance(orig_func, str):
func_path = orig_func.split('.')
@@ -20,13 +24,13 @@ def __new__(cls, orig_func, sub_func, cond_func):
print(f"Warning: Failed to resolve {orig_func} for CondFunc hijack")
pass
self.__init__(orig_func, sub_func, cond_func)
- return lambda *args, **kwargs: self(*args, **kwargs)
- def __init__(self, orig_func, sub_func, cond_func):
- self.__orig_func = orig_func
- self.__sub_func = sub_func
- self.__cond_func = cond_func
- def __call__(self, *args, **kwargs):
- if not self.__cond_func or self.__cond_func(self.__orig_func, *args, **kwargs):
- return self.__sub_func(self.__orig_func, *args, **kwargs)
- else:
- return self.__orig_func(*args, **kwargs)
+ return lambda *args, **kwargs: self(*args, **kwargs)
+ def __init__(self, orig_func, sub_func, cond_func):
+ self.__orig_func = orig_func
+ self.__sub_func = sub_func
+ self.__cond_func = cond_func
+ def __call__(self, *args, **kwargs):
+ if not self.__cond_func or self.__cond_func(self.__orig_func, *args, **kwargs):
+ return self.__sub_func(self.__orig_func, *args, **kwargs)
+ else:
+ return self.__orig_func(*args, **kwargs)
diff --git a/modules/sd_models.py b/modules/sd_models.py
index f3b230955b5..517c7ecb268 100644
--- a/modules/sd_models.py
+++ b/modules/sd_models.py
@@ -1,7 +1,9 @@
import collections
+import importlib
import os
import sys
import threading
+import enum
import torch
import re
@@ -10,8 +12,6 @@
from urllib import request
import ldm.modules.midas as midas
-from ldm.util import instantiate_from_config
-
from modules import paths, shared, shared_items, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet, sd_models_xl, cache, extra_networks, processing, lowvram, sd_hijack, patches
from modules.timer import Timer
from modules.shared import opts
@@ -27,6 +27,14 @@
checkpoints_loaded = collections.OrderedDict()
+class ModelType(enum.Enum):
+ SD1 = 1
+ SD2 = 2
+ SDXL = 3
+ SSD = 4
+ SD3 = 5
+
+
def replace_key(d, key, new_key, value):
keys = list(d.keys())
@@ -149,11 +157,12 @@ def list_models():
cmd_ckpt = shared.cmd_opts.ckpt
if shared.cmd_opts.no_download_sd_model or cmd_ckpt != shared.sd_model_file or os.path.exists(cmd_ckpt):
model_url = None
+ expected_sha256 = None
else:
model_url = f"{shared.hf_endpoint}/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors"
+ expected_sha256 = '6ce0161689b3853acaa03779ec93eafe75a02f4ced659bee03f50797806fa2fa'
- model_list = []
- model_list = modelloader.load_models(model_path=model_path, model_url=model_url, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], download_name="v1-5-pruned-emaonly.safetensors", ext_blacklist=[".vae.ckpt", ".vae.safetensors"])
+ model_list = modelloader.load_models(model_path=model_path, model_url=model_url, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], download_name="v1-5-pruned-emaonly.safetensors", ext_blacklist=[".vae.ckpt", ".vae.safetensors"], hash_prefix=expected_sha256)
if os.path.exists(cmd_ckpt):
checkpoint_info = CheckpointInfo(cmd_ckpt)
@@ -281,17 +290,21 @@ def read_metadata_from_safetensors(filename):
json_start = file.read(2)
assert metadata_len > 2 and json_start in (b'{"', b"{'"), f"{filename} is not a safetensors file"
- json_data = json_start + file.read(metadata_len-2)
- json_obj = json.loads(json_data)
res = {}
- for k, v in json_obj.get("__metadata__", {}).items():
- res[k] = v
- if isinstance(v, str) and v[0:1] == '{':
- try:
- res[k] = json.loads(v)
- except Exception:
- pass
+
+ try:
+ json_data = json_start + file.read(metadata_len-2)
+ json_obj = json.loads(json_data)
+ for k, v in json_obj.get("__metadata__", {}).items():
+ res[k] = v
+ if isinstance(v, str) and v[0:1] == '{':
+ try:
+ res[k] = json.loads(v)
+ except Exception:
+ pass
+ except Exception:
+ errors.report(f"Error reading metadata from file: {filename}", exc_info=True)
return res
@@ -363,6 +376,37 @@ def check_fp8(model):
return enable_fp8
+def set_model_type(model, state_dict):
+ model.is_sd1 = False
+ model.is_sd2 = False
+ model.is_sdxl = False
+ model.is_ssd = False
+ model.is_sd3 = False
+
+ if "model.diffusion_model.x_embedder.proj.weight" in state_dict:
+ model.is_sd3 = True
+ model.model_type = ModelType.SD3
+ elif hasattr(model, 'conditioner'):
+ model.is_sdxl = True
+
+ if 'model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_q.weight' not in state_dict.keys():
+ model.is_ssd = True
+ model.model_type = ModelType.SSD
+ else:
+ model.model_type = ModelType.SDXL
+ elif hasattr(model.cond_stage_model, 'model'):
+ model.is_sd2 = True
+ model.model_type = ModelType.SD2
+ else:
+ model.is_sd1 = True
+ model.model_type = ModelType.SD1
+
+
+def set_model_fields(model):
+ if not hasattr(model, 'latent_channels'):
+ model.latent_channels = 4
+
+
def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer):
sd_model_hash = checkpoint_info.calculate_shorthash()
timer.record("calculate hash")
@@ -377,10 +421,9 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer
if state_dict is None:
state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
- model.is_sdxl = hasattr(model, 'conditioner')
- model.is_sd2 = not model.is_sdxl and hasattr(model.cond_stage_model, 'model')
- model.is_sd1 = not model.is_sdxl and not model.is_sd2
- model.is_ssd = model.is_sdxl and 'model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_q.weight' not in state_dict.keys()
+ set_model_type(model, state_dict)
+ set_model_fields(model)
+
if model.is_sdxl:
sd_models_xl.extend_sdxl(model)
@@ -391,11 +434,30 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer
# cache newly loaded model
checkpoints_loaded[checkpoint_info] = state_dict.copy()
+ if hasattr(model, "before_load_weights"):
+ model.before_load_weights(state_dict)
+
model.load_state_dict(state_dict, strict=False)
timer.record("apply weights to model")
+ if hasattr(model, "after_load_weights"):
+ model.after_load_weights(state_dict)
+
del state_dict
+ # Set is_sdxl_inpaint flag.
+ # Checks Unet structure to detect inpaint model. The inpaint model's
+ # checkpoint state_dict does not contain the key
+ # 'diffusion_model.input_blocks.0.0.weight'.
+ diffusion_model_input = model.model.state_dict().get(
+ 'diffusion_model.input_blocks.0.0.weight'
+ )
+ model.is_sdxl_inpaint = (
+ model.is_sdxl and
+ diffusion_model_input is not None and
+ diffusion_model_input.shape[1] == 9
+ )
+
if shared.cmd_opts.opt_channelslast:
model.to(memory_format=torch.channels_last)
timer.record("apply channels_last")
@@ -404,6 +466,7 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer
model.float()
model.alphas_cumprod_original = model.alphas_cumprod
devices.dtype_unet = torch.float32
+ assert shared.cmd_opts.precision != "half", "Cannot use --precision half with --no-half"
timer.record("apply float()")
else:
vae = model.first_stage_model
@@ -533,25 +596,34 @@ def patched_register_schedule(*args, **kwargs):
original_register_schedule = patches.patch(__name__, ldm.models.diffusion.ddpm.DDPM, 'register_schedule', patched_register_schedule)
-def repair_config(sd_config):
-
+def repair_config(sd_config, state_dict=None):
if not hasattr(sd_config.model.params, "use_ema"):
sd_config.model.params.use_ema = False
if hasattr(sd_config.model.params, 'unet_config'):
if shared.cmd_opts.no_half:
sd_config.model.params.unet_config.params.use_fp16 = False
- elif shared.cmd_opts.upcast_sampling:
+ elif shared.cmd_opts.upcast_sampling or shared.cmd_opts.precision == "half":
sd_config.model.params.unet_config.params.use_fp16 = True
- if getattr(sd_config.model.params.first_stage_config.params.ddconfig, "attn_type", None) == "vanilla-xformers" and not shared.xformers_available:
- sd_config.model.params.first_stage_config.params.ddconfig.attn_type = "vanilla"
+ if hasattr(sd_config.model.params, 'first_stage_config'):
+ if getattr(sd_config.model.params.first_stage_config.params.ddconfig, "attn_type", None) == "vanilla-xformers" and not shared.xformers_available:
+ sd_config.model.params.first_stage_config.params.ddconfig.attn_type = "vanilla"
# For UnCLIP-L, override the hardcoded karlo directory
if hasattr(sd_config.model.params, "noise_aug_config") and hasattr(sd_config.model.params.noise_aug_config.params, "clip_stats_path"):
karlo_path = os.path.join(paths.models_path, 'karlo')
sd_config.model.params.noise_aug_config.params.clip_stats_path = sd_config.model.params.noise_aug_config.params.clip_stats_path.replace("checkpoints/karlo_models", karlo_path)
+ # Do not use checkpoint for inference.
+ # This helps prevent extra performance overhead on checking parameters.
+ # The perf overhead is about 100ms/it on 4090 for SDXL.
+ if hasattr(sd_config.model.params, "network_config"):
+ sd_config.model.params.network_config.params.use_checkpoint = False
+ if hasattr(sd_config.model.params, "unet_config"):
+ sd_config.model.params.unet_config.params.use_checkpoint = False
+
+
def rescale_zero_terminal_snr_abar(alphas_cumprod):
alphas_bar_sqrt = alphas_cumprod.sqrt()
@@ -652,18 +724,23 @@ def get_empty_cond(sd_model):
p = processing.StableDiffusionProcessingTxt2Img()
extra_networks.activate(p, {})
- if hasattr(sd_model, 'conditioner'):
+ if hasattr(sd_model, 'get_learned_conditioning'):
d = sd_model.get_learned_conditioning([""])
- return d['crossattn']
else:
- return sd_model.cond_stage_model([""])
+ d = sd_model.cond_stage_model([""])
+
+ if isinstance(d, dict):
+ d = d['crossattn']
+
+ return d
def send_model_to_cpu(m):
- if m.lowvram:
- lowvram.send_everything_to_cpu()
- else:
- m.to(devices.cpu)
+ if m is not None:
+ if m.lowvram:
+ lowvram.send_everything_to_cpu()
+ else:
+ m.to(devices.cpu)
devices.torch_gc()
@@ -687,6 +764,25 @@ def send_model_to_trash(m):
devices.torch_gc()
+def instantiate_from_config(config, state_dict=None):
+ constructor = get_obj_from_str(config["target"])
+
+ params = {**config.get("params", {})}
+
+ if state_dict and "state_dict" in params and params["state_dict"] is None:
+ params["state_dict"] = state_dict
+
+ return constructor(**params)
+
+
+def get_obj_from_str(string, reload=False):
+ module, cls = string.rsplit(".", 1)
+ if reload:
+ module_imp = importlib.import_module(module)
+ importlib.reload(module_imp)
+ return getattr(importlib.import_module(module, package=None), cls)
+
+
def load_model(checkpoint_info=None, already_loaded_state_dict=None):
from modules import sd_hijack
checkpoint_info = checkpoint_info or select_checkpoint()
@@ -722,7 +818,7 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None):
timer.record("find config")
sd_config = OmegaConf.load(checkpoint_config)
- repair_config(sd_config)
+ repair_config(sd_config, state_dict)
timer.record("load config")
@@ -732,7 +828,7 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None):
try:
with sd_disable_initialization.DisableInitialization(disable_clip=clip_is_included_into_sd or shared.cmd_opts.do_not_download_clip):
with sd_disable_initialization.InitializeOnMeta():
- sd_model = instantiate_from_config(sd_config.model)
+ sd_model = instantiate_from_config(sd_config.model, state_dict)
except Exception as e:
errors.display(e, "creating model quickly", full_traceback=True)
@@ -741,7 +837,7 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None):
print('Failed to create model quickly; will retry using slow method.', file=sys.stderr)
with sd_disable_initialization.InitializeOnMeta():
- sd_model = instantiate_from_config(sd_config.model)
+ sd_model = instantiate_from_config(sd_config.model, state_dict)
sd_model.used_config = checkpoint_config
@@ -758,6 +854,7 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None):
with sd_disable_initialization.LoadStateDictOnMeta(state_dict, device=model_target_device(sd_model), weight_dtype_conversion=weight_dtype_conversion):
load_model_weights(sd_model, checkpoint_info, state_dict, timer)
+
timer.record("load weights from state dict")
send_model_to_device(sd_model)
diff --git a/modules/sd_models_config.py b/modules/sd_models_config.py
index b38137eb5a9..fb44c5a8d98 100644
--- a/modules/sd_models_config.py
+++ b/modules/sd_models_config.py
@@ -23,6 +23,8 @@
config_instruct_pix2pix = os.path.join(sd_configs_path, "instruct-pix2pix.yaml")
config_alt_diffusion = os.path.join(sd_configs_path, "alt-diffusion-inference.yaml")
config_alt_diffusion_m18 = os.path.join(sd_configs_path, "alt-diffusion-m18-inference.yaml")
+config_sd3 = os.path.join(sd_configs_path, "sd3-inference.yaml")
+
def is_using_v_parameterization_for_sd2(state_dict):
"""
@@ -31,11 +33,11 @@ def is_using_v_parameterization_for_sd2(state_dict):
import ldm.modules.diffusionmodules.openaimodel
- device = devices.cpu
+ device = devices.device
with sd_disable_initialization.DisableInitialization():
unet = ldm.modules.diffusionmodules.openaimodel.UNetModel(
- use_checkpoint=True,
+ use_checkpoint=False,
use_fp16=False,
image_size=32,
in_channels=4,
@@ -56,12 +58,13 @@ def is_using_v_parameterization_for_sd2(state_dict):
with torch.no_grad():
unet_sd = {k.replace("model.diffusion_model.", ""): v for k, v in state_dict.items() if "model.diffusion_model." in k}
unet.load_state_dict(unet_sd, strict=True)
- unet.to(device=device, dtype=torch.float)
+ unet.to(device=device, dtype=devices.dtype_unet)
test_cond = torch.ones((1, 2, 1024), device=device) * 0.5
x_test = torch.ones((1, 4, 8, 8), device=device) * 0.5
- out = (unet(x_test, torch.asarray([999], device=device), context=test_cond) - x_test).mean().item()
+ with devices.autocast():
+ out = (unet(x_test, torch.asarray([999], device=device), context=test_cond) - x_test).mean().cpu().item()
return out < -1
@@ -71,11 +74,15 @@ def guess_model_config_from_state_dict(sd, filename):
diffusion_model_input = sd.get('model.diffusion_model.input_blocks.0.0.weight', None)
sd2_variations_weight = sd.get('embedder.model.ln_final.weight', None)
+ if "model.diffusion_model.x_embedder.proj.weight" in sd:
+ return config_sd3
+
if sd.get('conditioner.embedders.1.model.ln_final.weight', None) is not None:
if diffusion_model_input.shape[1] == 9:
return config_sdxl_inpainting
else:
return config_sdxl
+
if sd.get('conditioner.embedders.0.model.ln_final.weight', None) is not None:
return config_sdxl_refiner
elif sd.get('depth_model.model.pretrained.act_postprocess3.0.project.0.bias', None) is not None:
@@ -99,7 +106,6 @@ def guess_model_config_from_state_dict(sd, filename):
if diffusion_model_input.shape[1] == 8:
return config_instruct_pix2pix
-
if sd.get('cond_stage_model.roberta.embeddings.word_embeddings.weight', None) is not None:
if sd.get('cond_stage_model.transformation.weight').size()[0] == 1024:
return config_alt_diffusion_m18
diff --git a/modules/sd_models_types.py b/modules/sd_models_types.py
index f911fbb68db..2fce2777b2f 100644
--- a/modules/sd_models_types.py
+++ b/modules/sd_models_types.py
@@ -32,3 +32,9 @@ class WebuiSdModel(LatentDiffusion):
is_sd1: bool
"""True if the model's architecture is SD 1.x"""
+
+ is_sd3: bool
+ """True if the model's architecture is SD 3"""
+
+ latent_channels: int
+ """number of layer in latent image representation; will be 16 in SD3 and 4 in other version"""
diff --git a/modules/sd_models_xl.py b/modules/sd_models_xl.py
index 94ff973fb84..1242a59369f 100644
--- a/modules/sd_models_xl.py
+++ b/modules/sd_models_xl.py
@@ -35,11 +35,10 @@ def get_learned_conditioning(self: sgm.models.diffusion.DiffusionEngine, batch:
def apply_model(self: sgm.models.diffusion.DiffusionEngine, x, t, cond):
- sd = self.model.state_dict()
- diffusion_model_input = sd.get('diffusion_model.input_blocks.0.0.weight', None)
- if diffusion_model_input is not None:
- if diffusion_model_input.shape[1] == 9:
- x = torch.cat([x] + cond['c_concat'], dim=1)
+ """WARNING: This function is called once per denoising iteration. DO NOT add
+ expensive functionc calls such as `model.state_dict`. """
+ if self.is_sdxl_inpaint:
+ x = torch.cat([x] + cond['c_concat'], dim=1)
return self.model(x, t, cond)
diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py
index 30c80c13520..6538d19bb43 100644
--- a/modules/sd_samplers.py
+++ b/modules/sd_samplers.py
@@ -1,7 +1,7 @@
from __future__ import annotations
import functools
-
+import logging
from modules import sd_samplers_kdiffusion, sd_samplers_timesteps, sd_samplers_diffusers, sd_samplers_lcm, shared, sd_samplers_common, sd_schedulers
# imports for functions that previously were here and are used by other modules
@@ -98,7 +98,7 @@ def get_hr_scheduler_from_infotext(d: dict):
@functools.cache
-def get_sampler_and_scheduler(sampler_name, scheduler_name):
+def get_sampler_and_scheduler(sampler_name, scheduler_name, *, convert_automatic=True):
default_sampler = samplers[0]
found_scheduler = sd_schedulers.schedulers_map.get(scheduler_name, sd_schedulers.schedulers[0])
@@ -116,10 +116,17 @@ def get_sampler_and_scheduler(sampler_name, scheduler_name):
sampler = all_samplers_map.get(name, default_sampler)
# revert back to Automatic if it's the default scheduler for the selected sampler
- if sampler.options.get('scheduler', None) == found_scheduler.name:
+ if convert_automatic and sampler.options.get('scheduler', None) == found_scheduler.name:
found_scheduler = sd_schedulers.schedulers[0]
return sampler.name, found_scheduler.label
+def fix_p_invalid_sampler_and_scheduler(p):
+ i_sampler_name, i_scheduler = p.sampler_name, p.scheduler
+ p.sampler_name, p.scheduler = get_sampler_and_scheduler(p.sampler_name, p.scheduler, convert_automatic=False)
+ if p.sampler_name != i_sampler_name or i_scheduler != p.scheduler:
+ logging.warning(f'Sampler Scheduler autocorrection: "{i_sampler_name}" -> "{p.sampler_name}", "{i_scheduler}" -> "{p.scheduler}"')
+
+
set_samplers()
diff --git a/modules/sd_samplers_cfg_denoiser.py b/modules/sd_samplers_cfg_denoiser.py
index 93581c9acc6..b6fbf337243 100644
--- a/modules/sd_samplers_cfg_denoiser.py
+++ b/modules/sd_samplers_cfg_denoiser.py
@@ -1,5 +1,5 @@
import torch
-from modules import prompt_parser, devices, sd_samplers_common
+from modules import prompt_parser, sd_samplers_common
from modules.shared import opts, state
import modules.shared as shared
@@ -58,6 +58,11 @@ def __init__(self, sampler):
self.model_wrap = None
self.p = None
+ self.cond_scale_miltiplier = 1.0
+
+ self.need_last_noise_uncond = False
+ self.last_noise_uncond = None
+
# NOTE: masking before denoising can cause the original latents to be oversmoothed
# as the original latents do not have noise
self.mask_before_denoising = False
@@ -212,9 +217,16 @@ def apply_blend(current_latent):
uncond = denoiser_params.text_uncond
skip_uncond = False
- # alternating uncond allows for higher thresholds without the quality loss normally expected from raising it
- if self.step % 2 and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model:
+ if shared.opts.skip_early_cond != 0. and self.step / self.total_steps <= shared.opts.skip_early_cond:
+ skip_uncond = True
+ self.p.extra_generation_params["Skip Early CFG"] = shared.opts.skip_early_cond
+ elif (self.step % 2 or shared.opts.s_min_uncond_all) and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model:
skip_uncond = True
+ self.p.extra_generation_params["NGMS"] = s_min_uncond
+ if shared.opts.s_min_uncond_all:
+ self.p.extra_generation_params["NGMS all steps"] = shared.opts.s_min_uncond_all
+
+ if skip_uncond:
x_in = x_in[:-batch_size]
sigma_in = sigma_in[:-batch_size]
@@ -266,14 +278,15 @@ def apply_blend(current_latent):
denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps, self.inner_model)
cfg_denoised_callback(denoised_params)
- devices.test_for_nans(x_out, "unet")
+ if self.need_last_noise_uncond:
+ self.last_noise_uncond = torch.clone(x_out[-uncond.shape[0]:])
if is_edit_model:
- denoised = self.combine_denoised_for_edit_model(x_out, cond_scale)
+ denoised = self.combine_denoised_for_edit_model(x_out, cond_scale * self.cond_scale_miltiplier)
elif skip_uncond:
denoised = self.combine_denoised(x_out, conds_list, uncond, 1.0)
else:
- denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
+ denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale * self.cond_scale_miltiplier)
# Blend in the original latents (after)
if not self.mask_before_denoising and self.mask is not None:
diff --git a/modules/sd_samplers_common.py b/modules/sd_samplers_common.py
index bda578cc5b8..c060cccb24b 100644
--- a/modules/sd_samplers_common.py
+++ b/modules/sd_samplers_common.py
@@ -54,7 +54,7 @@ def samples_to_images_tensor(sample, approximation=None, model=None):
else:
if model is None:
model = shared.sd_model
- with devices.without_autocast(): # fixes an issue with unstable VAEs that are flaky even in fp32
+ with torch.no_grad(), devices.without_autocast(): # fixes an issue with unstable VAEs that are flaky even in fp32
x_sample = model.decode_first_stage(sample.to(model.first_stage_model.dtype))
return x_sample
@@ -163,7 +163,7 @@ def apply_refiner(cfg_denoiser, sigma=None):
else:
# torch.max(sigma) only to handle rare case where we might have different sigmas in the same batch
try:
- timestep = torch.argmin(torch.abs(cfg_denoiser.inner_model.sigmas - torch.max(sigma)))
+ timestep = torch.argmin(torch.abs(cfg_denoiser.inner_model.sigmas.to(sigma.device) - torch.max(sigma)))
except AttributeError: # for samplers that don't use sigmas (DDIM) sigma is actually the timestep
timestep = torch.max(sigma).to(dtype=int)
completed_ratio = (999 - timestep) / 1000
@@ -246,7 +246,7 @@ def __init__(self, funcname):
self.eta_infotext_field = 'Eta'
self.eta_default = 1.0
- self.conditioning_key = shared.sd_model.model.conditioning_key
+ self.conditioning_key = getattr(shared.sd_model.model, 'conditioning_key', 'crossattn')
self.p = None
self.model_wrap_cfg = None
diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py
index ad177dea820..badce603120 100644
--- a/modules/sd_samplers_kdiffusion.py
+++ b/modules/sd_samplers_kdiffusion.py
@@ -1,7 +1,7 @@
import torch
import inspect
import k_diffusion.sampling
-from modules import devices, sd_samplers_common, sd_samplers_extra, sd_samplers_cfg_denoiser, sd_schedulers
+from modules import sd_samplers_common, sd_samplers_extra, sd_samplers_cfg_denoiser, sd_schedulers, devices
from modules.sd_samplers_cfg_denoiser import CFGDenoiser # noqa: F401
from modules.script_callbacks import ExtraNoiseParams, extra_noise_callback
@@ -53,8 +53,13 @@ class CFGDenoiserKDiffusion(sd_samplers_cfg_denoiser.CFGDenoiser):
@property
def inner_model(self):
if self.model_wrap is None:
- denoiser = k_diffusion.external.CompVisVDenoiser if shared.sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
- self.model_wrap = denoiser(shared.sd_model, quantize=shared.opts.enable_quantization)
+ denoiser_constructor = getattr(shared.sd_model, 'create_denoiser', None)
+
+ if denoiser_constructor is not None:
+ self.model_wrap = denoiser_constructor()
+ else:
+ denoiser = k_diffusion.external.CompVisVDenoiser if shared.sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
+ self.model_wrap = denoiser(shared.sd_model, quantize=shared.opts.enable_quantization)
return self.model_wrap
@@ -116,12 +121,16 @@ def get_sigmas(self, p, steps):
if scheduler.need_inner_model:
sigmas_kwargs['inner_model'] = self.model_wrap
- sigmas = scheduler.function(n=steps, **sigmas_kwargs, device=shared.device)
+ if scheduler.label == 'Beta':
+ p.extra_generation_params["Beta schedule alpha"] = opts.beta_dist_alpha
+ p.extra_generation_params["Beta schedule beta"] = opts.beta_dist_beta
+
+ sigmas = scheduler.function(n=steps, **sigmas_kwargs, device=devices.cpu)
if discard_next_to_last_sigma:
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
- return sigmas
+ return sigmas.cpu()
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
@@ -129,7 +138,10 @@ def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning,
sigmas = self.get_sigmas(p, steps)
sigma_sched = sigmas[steps - t_enc - 1:]
- xi = x + noise * sigma_sched[0]
+ if hasattr(shared.sd_model, 'add_noise_to_latent'):
+ xi = shared.sd_model.add_noise_to_latent(x, noise, sigma_sched[0])
+ else:
+ xi = x + noise * sigma_sched[0]
if opts.img2img_extra_noise > 0:
p.extra_generation_params["Extra noise"] = opts.img2img_extra_noise
diff --git a/modules/sd_samplers_timesteps.py b/modules/sd_samplers_timesteps.py
index 8cc7d3848aa..81edd67d6e4 100644
--- a/modules/sd_samplers_timesteps.py
+++ b/modules/sd_samplers_timesteps.py
@@ -10,6 +10,7 @@
samplers_timesteps = [
('DDIM', sd_samplers_timesteps_impl.ddim, ['ddim'], {}),
+ ('DDIM CFG++', sd_samplers_timesteps_impl.ddim_cfgpp, ['ddim_cfgpp'], {}),
('PLMS', sd_samplers_timesteps_impl.plms, ['plms'], {}),
('UniPC', sd_samplers_timesteps_impl.unipc, ['unipc'], {}),
]
diff --git a/modules/sd_samplers_timesteps_impl.py b/modules/sd_samplers_timesteps_impl.py
index 930a64af590..180e4389988 100644
--- a/modules/sd_samplers_timesteps_impl.py
+++ b/modules/sd_samplers_timesteps_impl.py
@@ -5,13 +5,14 @@
from modules import shared
from modules.models.diffusion.uni_pc import uni_pc
+from modules.torch_utils import float64
@torch.no_grad()
def ddim(model, x, timesteps, extra_args=None, callback=None, disable=None, eta=0.0):
alphas_cumprod = model.inner_model.inner_model.alphas_cumprod
alphas = alphas_cumprod[timesteps]
- alphas_prev = alphas_cumprod[torch.nn.functional.pad(timesteps[:-1], pad=(1, 0))].to(torch.float64 if x.device.type != 'mps' and x.device.type != 'xpu' else torch.float32)
+ alphas_prev = alphas_cumprod[torch.nn.functional.pad(timesteps[:-1], pad=(1, 0))].to(float64(x))
sqrt_one_minus_alphas = torch.sqrt(1 - alphas)
sigmas = eta * np.sqrt((1 - alphas_prev.cpu().numpy()) / (1 - alphas.cpu()) * (1 - alphas.cpu() / alphas_prev.cpu().numpy()))
@@ -39,11 +40,51 @@ def ddim(model, x, timesteps, extra_args=None, callback=None, disable=None, eta=
return x
+@torch.no_grad()
+def ddim_cfgpp(model, x, timesteps, extra_args=None, callback=None, disable=None, eta=0.0):
+ """ Implements CFG++: Manifold-constrained Classifier Free Guidance For Diffusion Models (2024).
+ Uses the unconditional noise prediction instead of the conditional noise to guide the denoising direction.
+ The CFG scale is divided by 12.5 to map CFG from [0.0, 12.5] to [0, 1.0].
+ """
+ alphas_cumprod = model.inner_model.inner_model.alphas_cumprod
+ alphas = alphas_cumprod[timesteps]
+ alphas_prev = alphas_cumprod[torch.nn.functional.pad(timesteps[:-1], pad=(1, 0))].to(float64(x))
+ sqrt_one_minus_alphas = torch.sqrt(1 - alphas)
+ sigmas = eta * np.sqrt((1 - alphas_prev.cpu().numpy()) / (1 - alphas.cpu()) * (1 - alphas.cpu() / alphas_prev.cpu().numpy()))
+
+ model.cond_scale_miltiplier = 1 / 12.5
+ model.need_last_noise_uncond = True
+
+ extra_args = {} if extra_args is None else extra_args
+ s_in = x.new_ones((x.shape[0]))
+ s_x = x.new_ones((x.shape[0], 1, 1, 1))
+ for i in tqdm.trange(len(timesteps) - 1, disable=disable):
+ index = len(timesteps) - 1 - i
+
+ e_t = model(x, timesteps[index].item() * s_in, **extra_args)
+ last_noise_uncond = model.last_noise_uncond
+
+ a_t = alphas[index].item() * s_x
+ a_prev = alphas_prev[index].item() * s_x
+ sigma_t = sigmas[index].item() * s_x
+ sqrt_one_minus_at = sqrt_one_minus_alphas[index].item() * s_x
+
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
+ dir_xt = (1. - a_prev - sigma_t ** 2).sqrt() * last_noise_uncond
+ noise = sigma_t * k_diffusion.sampling.torch.randn_like(x)
+ x = a_prev.sqrt() * pred_x0 + dir_xt + noise
+
+ if callback is not None:
+ callback({'x': x, 'i': i, 'sigma': 0, 'sigma_hat': 0, 'denoised': pred_x0})
+
+ return x
+
+
@torch.no_grad()
def plms(model, x, timesteps, extra_args=None, callback=None, disable=None):
alphas_cumprod = model.inner_model.inner_model.alphas_cumprod
alphas = alphas_cumprod[timesteps]
- alphas_prev = alphas_cumprod[torch.nn.functional.pad(timesteps[:-1], pad=(1, 0))].to(torch.float64 if x.device.type != 'mps' and x.device.type != 'xpu' else torch.float32)
+ alphas_prev = alphas_cumprod[torch.nn.functional.pad(timesteps[:-1], pad=(1, 0))].to(float64(x))
sqrt_one_minus_alphas = torch.sqrt(1 - alphas)
extra_args = {} if extra_args is None else extra_args
diff --git a/modules/sd_schedulers.py b/modules/sd_schedulers.py
index 75eb3ac032f..f4d16e309ff 100644
--- a/modules/sd_schedulers.py
+++ b/modules/sd_schedulers.py
@@ -1,8 +1,18 @@
import dataclasses
-
import torch
-
import k_diffusion
+import numpy as np
+from scipy import stats
+
+from modules import shared
+
+
+def to_d(x, sigma, denoised):
+ """Converts a denoiser output to a Karras ODE derivative."""
+ return (x - denoised) / sigma
+
+
+k_diffusion.sampling.to_d = to_d
@dataclasses.dataclass
@@ -17,7 +27,7 @@ class Scheduler:
def uniform(n, sigma_min, sigma_max, inner_model, device):
- return inner_model.get_sigmas(n)
+ return inner_model.get_sigmas(n).to(device)
def sgm_uniform(n, sigma_min, sigma_max, inner_model, device):
@@ -31,6 +41,92 @@ def sgm_uniform(n, sigma_min, sigma_max, inner_model, device):
return torch.FloatTensor(sigs).to(device)
+def get_align_your_steps_sigmas(n, sigma_min, sigma_max, device):
+ # https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html
+ def loglinear_interp(t_steps, num_steps):
+ """
+ Performs log-linear interpolation of a given array of decreasing numbers.
+ """
+ xs = np.linspace(0, 1, len(t_steps))
+ ys = np.log(t_steps[::-1])
+
+ new_xs = np.linspace(0, 1, num_steps)
+ new_ys = np.interp(new_xs, xs, ys)
+
+ interped_ys = np.exp(new_ys)[::-1].copy()
+ return interped_ys
+
+ if shared.sd_model.is_sdxl:
+ sigmas = [14.615, 6.315, 3.771, 2.181, 1.342, 0.862, 0.555, 0.380, 0.234, 0.113, 0.029]
+ else:
+ # Default to SD 1.5 sigmas.
+ sigmas = [14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.029]
+
+ if n != len(sigmas):
+ sigmas = np.append(loglinear_interp(sigmas, n), [0.0])
+ else:
+ sigmas.append(0.0)
+
+ return torch.FloatTensor(sigmas).to(device)
+
+
+def kl_optimal(n, sigma_min, sigma_max, device):
+ alpha_min = torch.arctan(torch.tensor(sigma_min, device=device))
+ alpha_max = torch.arctan(torch.tensor(sigma_max, device=device))
+ step_indices = torch.arange(n + 1, device=device)
+ sigmas = torch.tan(step_indices / n * alpha_min + (1.0 - step_indices / n) * alpha_max)
+ return sigmas
+
+
+def simple_scheduler(n, sigma_min, sigma_max, inner_model, device):
+ sigs = []
+ ss = len(inner_model.sigmas) / n
+ for x in range(n):
+ sigs += [float(inner_model.sigmas[-(1 + int(x * ss))])]
+ sigs += [0.0]
+ return torch.FloatTensor(sigs).to(device)
+
+
+def normal_scheduler(n, sigma_min, sigma_max, inner_model, device, sgm=False, floor=False):
+ start = inner_model.sigma_to_t(torch.tensor(sigma_max))
+ end = inner_model.sigma_to_t(torch.tensor(sigma_min))
+
+ if sgm:
+ timesteps = torch.linspace(start, end, n + 1)[:-1]
+ else:
+ timesteps = torch.linspace(start, end, n)
+
+ sigs = []
+ for x in range(len(timesteps)):
+ ts = timesteps[x]
+ sigs.append(inner_model.t_to_sigma(ts))
+ sigs += [0.0]
+ return torch.FloatTensor(sigs).to(device)
+
+
+def ddim_scheduler(n, sigma_min, sigma_max, inner_model, device):
+ sigs = []
+ ss = max(len(inner_model.sigmas) // n, 1)
+ x = 1
+ while x < len(inner_model.sigmas):
+ sigs += [float(inner_model.sigmas[x])]
+ x += ss
+ sigs = sigs[::-1]
+ sigs += [0.0]
+ return torch.FloatTensor(sigs).to(device)
+
+
+def beta_scheduler(n, sigma_min, sigma_max, inner_model, device):
+ # From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024) """
+ alpha = shared.opts.beta_dist_alpha
+ beta = shared.opts.beta_dist_beta
+ timesteps = 1 - np.linspace(0, 1, n)
+ timesteps = [stats.beta.ppf(x, alpha, beta) for x in timesteps]
+ sigmas = [sigma_min + (x * (sigma_max-sigma_min)) for x in timesteps]
+ sigmas += [0.0]
+ return torch.FloatTensor(sigmas).to(device)
+
+
schedulers = [
Scheduler('automatic', 'Automatic', None),
Scheduler('uniform', 'Uniform', uniform, need_inner_model=True),
@@ -38,6 +134,12 @@ def sgm_uniform(n, sigma_min, sigma_max, inner_model, device):
Scheduler('exponential', 'Exponential', k_diffusion.sampling.get_sigmas_exponential),
Scheduler('polyexponential', 'Polyexponential', k_diffusion.sampling.get_sigmas_polyexponential, default_rho=1.0),
Scheduler('sgm_uniform', 'SGM Uniform', sgm_uniform, need_inner_model=True, aliases=["SGMUniform"]),
+ Scheduler('kl_optimal', 'KL Optimal', kl_optimal),
+ Scheduler('align_your_steps', 'Align Your Steps', get_align_your_steps_sigmas),
+ Scheduler('simple', 'Simple', simple_scheduler, need_inner_model=True),
+ Scheduler('normal', 'Normal', normal_scheduler, need_inner_model=True),
+ Scheduler('ddim', 'DDIM', ddim_scheduler, need_inner_model=True),
+ Scheduler('beta', 'Beta', beta_scheduler, need_inner_model=True),
]
schedulers_map = {**{x.name: x for x in schedulers}, **{x.label: x for x in schedulers}}
diff --git a/modules/sd_vae_approx.py b/modules/sd_vae_approx.py
index 3965e223e6f..c5dda7431f1 100644
--- a/modules/sd_vae_approx.py
+++ b/modules/sd_vae_approx.py
@@ -8,9 +8,9 @@
class VAEApprox(nn.Module):
- def __init__(self):
+ def __init__(self, latent_channels=4):
super(VAEApprox, self).__init__()
- self.conv1 = nn.Conv2d(4, 8, (7, 7))
+ self.conv1 = nn.Conv2d(latent_channels, 8, (7, 7))
self.conv2 = nn.Conv2d(8, 16, (5, 5))
self.conv3 = nn.Conv2d(16, 32, (3, 3))
self.conv4 = nn.Conv2d(32, 64, (3, 3))
@@ -40,7 +40,13 @@ def download_model(model_path, model_url):
def model():
- model_name = "vaeapprox-sdxl.pt" if getattr(shared.sd_model, 'is_sdxl', False) else "model.pt"
+ if shared.sd_model.is_sd3:
+ model_name = "vaeapprox-sd3.pt"
+ elif shared.sd_model.is_sdxl:
+ model_name = "vaeapprox-sdxl.pt"
+ else:
+ model_name = "model.pt"
+
loaded_model = sd_vae_approx_models.get(model_name)
if loaded_model is None:
@@ -52,7 +58,7 @@ def model():
model_path = os.path.join(paths.models_path, "VAE-approx", model_name)
download_model(model_path, 'https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases/download/v1.0.0-pre/' + model_name)
- loaded_model = VAEApprox()
+ loaded_model = VAEApprox(latent_channels=shared.sd_model.latent_channels)
loaded_model.load_state_dict(torch.load(model_path, map_location='cpu' if devices.device.type != 'cuda' else None))
loaded_model.eval()
loaded_model.to(devices.device, devices.dtype)
@@ -64,7 +70,18 @@ def model():
def cheap_approximation(sample):
# https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/2
- if shared.sd_model.is_sdxl:
+ if shared.sd_model.is_sd3:
+ coeffs = [
+ [-0.0645, 0.0177, 0.1052], [ 0.0028, 0.0312, 0.0650],
+ [ 0.1848, 0.0762, 0.0360], [ 0.0944, 0.0360, 0.0889],
+ [ 0.0897, 0.0506, -0.0364], [-0.0020, 0.1203, 0.0284],
+ [ 0.0855, 0.0118, 0.0283], [-0.0539, 0.0658, 0.1047],
+ [-0.0057, 0.0116, 0.0700], [-0.0412, 0.0281, -0.0039],
+ [ 0.1106, 0.1171, 0.1220], [-0.0248, 0.0682, -0.0481],
+ [ 0.0815, 0.0846, 0.1207], [-0.0120, -0.0055, -0.0867],
+ [-0.0749, -0.0634, -0.0456], [-0.1418, -0.1457, -0.1259],
+ ]
+ elif shared.sd_model.is_sdxl:
coeffs = [
[ 0.3448, 0.4168, 0.4395],
[-0.1953, -0.0290, 0.0250],
diff --git a/modules/sd_vae_taesd.py b/modules/sd_vae_taesd.py
index 808eb3624fd..d06253d2a88 100644
--- a/modules/sd_vae_taesd.py
+++ b/modules/sd_vae_taesd.py
@@ -34,9 +34,9 @@ def forward(self, x):
return self.fuse(self.conv(x) + self.skip(x))
-def decoder():
+def decoder(latent_channels=4):
return nn.Sequential(
- Clamp(), conv(4, 64), nn.ReLU(),
+ Clamp(), conv(latent_channels, 64), nn.ReLU(),
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
Block(64, 64), Block(64, 64), Block(64, 64), nn.Upsample(scale_factor=2), conv(64, 64, bias=False),
@@ -44,13 +44,13 @@ def decoder():
)
-def encoder():
+def encoder(latent_channels=4):
return nn.Sequential(
conv(3, 64), Block(64, 64),
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
- conv(64, 4),
+ conv(64, latent_channels),
)
@@ -58,10 +58,14 @@ class TAESDDecoder(nn.Module):
latent_magnitude = 3
latent_shift = 0.5
- def __init__(self, decoder_path="taesd_decoder.pth"):
+ def __init__(self, decoder_path="taesd_decoder.pth", latent_channels=None):
"""Initialize pretrained TAESD on the given device from the given checkpoints."""
super().__init__()
- self.decoder = decoder()
+
+ if latent_channels is None:
+ latent_channels = 16 if "taesd3" in str(decoder_path) else 4
+
+ self.decoder = decoder(latent_channels)
self.decoder.load_state_dict(
torch.load(decoder_path, map_location='cpu' if devices.device.type != 'cuda' else None))
@@ -70,10 +74,14 @@ class TAESDEncoder(nn.Module):
latent_magnitude = 3
latent_shift = 0.5
- def __init__(self, encoder_path="taesd_encoder.pth"):
+ def __init__(self, encoder_path="taesd_encoder.pth", latent_channels=None):
"""Initialize pretrained TAESD on the given device from the given checkpoints."""
super().__init__()
- self.encoder = encoder()
+
+ if latent_channels is None:
+ latent_channels = 16 if "taesd3" in str(encoder_path) else 4
+
+ self.encoder = encoder(latent_channels)
self.encoder.load_state_dict(
torch.load(encoder_path, map_location='cpu' if devices.device.type != 'cuda' else None))
@@ -87,7 +95,13 @@ def download_model(model_path, model_url):
def decoder_model():
- model_name = "taesdxl_decoder.pth" if getattr(shared.sd_model, 'is_sdxl', False) else "taesd_decoder.pth"
+ if shared.sd_model.is_sd3:
+ model_name = "taesd3_decoder.pth"
+ elif shared.sd_model.is_sdxl:
+ model_name = "taesdxl_decoder.pth"
+ else:
+ model_name = "taesd_decoder.pth"
+
loaded_model = sd_vae_taesd_models.get(model_name)
if loaded_model is None:
@@ -106,7 +120,13 @@ def decoder_model():
def encoder_model():
- model_name = "taesdxl_encoder.pth" if getattr(shared.sd_model, 'is_sdxl', False) else "taesd_encoder.pth"
+ if shared.sd_model.is_sd3:
+ model_name = "taesd3_encoder.pth"
+ elif shared.sd_model.is_sdxl:
+ model_name = "taesdxl_encoder.pth"
+ else:
+ model_name = "taesd_encoder.pth"
+
loaded_model = sd_vae_taesd_models.get(model_name)
if loaded_model is None:
diff --git a/modules/shared.py b/modules/shared.py
index f08f6896004..43253de8122 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -49,7 +49,7 @@
sd_refiner: sd_models_types.WebuiSdModel = None
settings_components: dict = None
-"""assigned from ui.py, a mapping on setting names to gradio components repsponsible for those settings"""
+"""assigned from ui.py, a mapping on setting names to gradio components responsible for those settings"""
tab_names = []
diff --git a/modules/shared_gradio_themes.py b/modules/shared_gradio_themes.py
index b6dc31450bc..b4e3f32bc9f 100644
--- a/modules/shared_gradio_themes.py
+++ b/modules/shared_gradio_themes.py
@@ -69,3 +69,44 @@ def reload_gradio_theme(theme_name=None):
# append additional values gradio_theme
shared.gradio_theme.sd_webui_modal_lightbox_toolbar_opacity = shared.opts.sd_webui_modal_lightbox_toolbar_opacity
shared.gradio_theme.sd_webui_modal_lightbox_icon_opacity = shared.opts.sd_webui_modal_lightbox_icon_opacity
+
+
+def resolve_var(name: str, gradio_theme=None, history=None):
+ """
+ Attempt to resolve a theme variable name to its value
+
+ Parameters:
+ name (str): The name of the theme variable
+ ie "background_fill_primary", "background_fill_primary_dark"
+ spaces and asterisk (*) prefix is removed from name before lookup
+ gradio_theme (gradio.themes.ThemeClass): The theme object to resolve the variable from
+ blank to use the webui default shared.gradio_theme
+ history (list): A list of previously resolved variables to prevent circular references
+ for regular use leave blank
+ Returns:
+ str: The resolved value
+
+ Error handling:
+ return either #000000 or #ffffff depending on initial name ending with "_dark"
+ """
+ try:
+ if history is None:
+ history = []
+ if gradio_theme is None:
+ gradio_theme = shared.gradio_theme
+
+ name = name.strip()
+ name = name[1:] if name.startswith("*") else name
+
+ if name in history:
+ raise ValueError(f'Circular references: name "{name}" in {history}')
+
+ if value := getattr(gradio_theme, name, None):
+ return resolve_var(value, gradio_theme, history + [name])
+ else:
+ return name
+
+ except Exception:
+ name = history[0] if history else name
+ errors.report(f'resolve_color({name})', exc_info=True)
+ return '#000000' if name.endswith("_dark") else '#ffffff'
diff --git a/modules/shared_init.py b/modules/shared_init.py
index 4118daaab75..55e1232e55c 100644
--- a/modules/shared_init.py
+++ b/modules/shared_init.py
@@ -39,6 +39,14 @@ def initialize():
devices.dtype_vae = torch.float32 if cmd_opts.no_half or cmd_opts.no_half_vae else torch.float16
devices.dtype_inference = torch.float32 if cmd_opts.precision == 'full' else devices.dtype
+ if cmd_opts.precision == "half":
+ msg = "--no-half and --no-half-vae conflict with --precision half"
+ assert devices.dtype == torch.float16, msg
+ assert devices.dtype_vae == torch.float16, msg
+ assert devices.dtype_inference == torch.float16, msg
+ devices.force_fp16 = True
+ devices.force_model_fp16()
+
shared.device = devices.device
shared.weight_load_location = None if cmd_opts.lowram else "cpu"
diff --git a/modules/shared_options.py b/modules/shared_options.py
index dc0492ef7b4..a7032e6625a 100644
--- a/modules/shared_options.py
+++ b/modules/shared_options.py
@@ -56,7 +56,7 @@
"save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
"save_mask": OptionInfo(False, "For inpainting, save a copy of the greyscale mask"),
"save_mask_composite": OptionInfo(False, "For inpainting, save a masked composite"),
- "jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
+ "jpeg_quality": OptionInfo(80, "Quality for saved jpeg and avif images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
"webp_lossless": OptionInfo(False, "Use lossless compression for webp images"),
"export_for_4chan": OptionInfo(True, "Save copy of large images as JPG").info("if the file size is above the limit, or either width or height are above the limit"),
"img_downscale_threshold": OptionInfo(4.0, "File size limit for the above option, MB", gr.Number),
@@ -66,6 +66,7 @@
"use_original_name_batch": OptionInfo(True, "Use original name for output filename during batch process in extras tab"),
"use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"),
"save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"),
+ "save_write_log_csv": OptionInfo(True, "Write log.csv when saving images using 'Save' button"),
"save_init_img": OptionInfo(False, "Save init images when using img2img"),
"temp_dir": OptionInfo("", "Directory for temporary images; leave empty for default"),
@@ -133,6 +134,22 @@
"dump_stacks_on_signal": OptionInfo(False, "Print stack traces before exiting the program with ctrl+c."),
}))
+options_templates.update(options_section(('profiler', "Profiler", "system"), {
+ "profiling_explanation": OptionHTML("""
+Those settings allow you to enable torch profiler when generating pictures.
+Profiling allows you to see which code uses how much of computer's resources during generation.
+Each generation writes its own profile to one file, overwriting previous.
+The file can be viewed in Chrome, or on a Perfetto web site.
+Warning: writing profile can take a lot of time, up to 30 seconds, and the file itelf can be around 500MB in size.
+"""),
+ "profiling_enable": OptionInfo(False, "Enable profiling"),
+ "profiling_activities": OptionInfo(["CPU"], "Activities", gr.CheckboxGroup, {"choices": ["CPU", "CUDA"]}),
+ "profiling_record_shapes": OptionInfo(True, "Record shapes"),
+ "profiling_profile_memory": OptionInfo(True, "Profile memory"),
+ "profiling_with_stack": OptionInfo(True, "Include python stack"),
+ "profiling_filename": OptionInfo("trace.json", "Profile filename"),
+}))
+
options_templates.update(options_section(('API', "API", "system"), {
"api_enable_requests": OptionInfo(True, "Allow http:// and https:// URLs for input images in API", restrict_api=True),
"api_forbid_local_requests": OptionInfo(True, "Forbid URLs to local resources", restrict_api=True),
@@ -164,6 +181,7 @@
"emphasis": OptionInfo("Original", "Emphasis mode", gr.Radio, lambda: {"choices": [x.name for x in sd_emphasis.options]}, infotext="Emphasis").info("makes it possible to make model to pay (more:1.1) or (less:0.9) attention to text when you use the syntax in prompt; " + sd_emphasis.get_options_descriptions()),
"enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
"comma_padding_backtrack": OptionInfo(20, "Prompt word wrap length limit", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1}).info("in tokens - for texts shorter than specified, if they don't fit into 75 token limit, move them to the next 75 token chunk"),
+ "sdxl_clip_l_skip": OptionInfo(False, "Clip skip SDXL", gr.Checkbox).info("Enable Clip skip for the secondary clip model in sdxl. Has no effect on SD 1.5 or SD 2.0/2.1."),
"CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}, infotext="Clip skip").link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer"),
"upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
"randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU", "NV"]}, infotext="RNG").info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors; use NV to produce same picture as on NVidia videocards"),
@@ -178,6 +196,10 @@
"sdxl_refiner_high_aesthetic_score": OptionInfo(6.0, "SDXL high aesthetic score", gr.Number).info("used for refiner model prompt"),
}))
+options_templates.update(options_section(('sd3', "Stable Diffusion 3", "sd"), {
+ "sd3_enable_t5": OptionInfo(False, "Enable T5").info("load T5 text encoder; increases VRAM use by a lot, potentially improving quality of generation; requires model reload to apply"),
+}))
+
options_templates.update(options_section(('vae', "VAE", "sd"), {
"sd_vae_explanation": OptionHTML("""
VAE is a neural network that transforms a standard RGB
@@ -229,7 +251,8 @@
options_templates.update(options_section(('optimizations', "Optimizations", "sd"), {
"cross_attention_optimization": OptionInfo("Automatic", "Cross attention optimization", gr.Dropdown, lambda: {"choices": shared_items.cross_attention_optimizations()}),
- "s_min_uncond": OptionInfo(0.0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 15.0, "step": 0.01}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"),
+ "s_min_uncond": OptionInfo(0.0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 15.0, "step": 0.01}, infotext='NGMS').link("PR", "https://github.com/AUTOMATIC1111/stablediffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"),
+ "s_min_uncond_all": OptionInfo(False, "Negative Guidance minimum sigma all steps", infotext='NGMS all steps').info("By default, NGMS above skips every other step; this makes it skip all steps"),
"token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}, infotext='Token merging ratio').link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"),
"token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
"token_merging_ratio_hr": OptionInfo(0.0, "Token merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}, infotext='Token merging ratio hr').info("only applies if non-zero and overrides above"),
@@ -248,7 +271,6 @@
"use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
"no_dpmpp_sde_batch_determinism": OptionInfo(False, "Do not make DPM++ SDE deterministic across different batch sizes."),
"use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."),
- "dont_fix_second_order_samplers_schedule": OptionInfo(False, "Do not fix prompt schedule for second order samplers."),
"hires_fix_use_firstpass_conds": OptionInfo(False, "For hires fix, calculate conds of second pass using extra networks of first pass."),
"use_old_scheduling": OptionInfo(False, "Use old prompt editing timelines.", infotext="Old prompt editing timelines").info("For [red:green:N]; old: If N < 1, it's a fraction of steps (and hires fix uses range from 0 to 1), if N >= 1, it's an absolute number of steps; new: If N has a decimal point in it, it's a fraction of steps (and hires fix uses range from 1 to 2), othewrwise it's an absolute number of steps"),
"use_downcasted_alpha_bar": OptionInfo(False, "Downcast model alphas_cumprod to fp16 before sampling. For reproducing old seeds.", infotext="Downcast alphas_cumprod"),
@@ -380,6 +402,7 @@
"live_preview_refresh_period": OptionInfo(1000, "Progressbar and preview update period").info("in milliseconds"),
"live_preview_fast_interrupt": OptionInfo(False, "Return image with chosen live preview method on interrupt").info("makes interrupts faster"),
"js_live_preview_in_modal_lightbox": OptionInfo(False, "Show Live preview in full page image viewer"),
+ "prevent_screen_sleep_during_generation": OptionInfo(True, "Prevent screen sleep during generation"),
}))
options_templates.update(options_section(('sampler-params', "Sampler parameters", "sd"), {
@@ -401,7 +424,10 @@
'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}, infotext='UniPC skip type'),
'uni_pc_order': OptionInfo(3, "UniPC order", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}, infotext='UniPC order').info("must be < sampling steps"),
'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final", infotext='UniPC lower order final'),
- 'sd_noise_schedule': OptionInfo("Default", "Noise schedule for sampling", gr.Radio, {"choices": ["Default", "Zero Terminal SNR"]}, infotext="Noise Schedule").info("for use with zero terminal SNR trained models")
+ 'sd_noise_schedule': OptionInfo("Default", "Noise schedule for sampling", gr.Radio, {"choices": ["Default", "Zero Terminal SNR"]}, infotext="Noise Schedule").info("for use with zero terminal SNR trained models"),
+ 'skip_early_cond': OptionInfo(0.0, "Ignore negative prompt during early sampling", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext="Skip Early CFG").info("disables CFG on a proportion of steps at the beginning of generation; 0=skip none; 1=skip all; can both improve sample diversity/quality and speed up sampling"),
+ 'beta_dist_alpha': OptionInfo(0.6, "Beta scheduler - alpha", gr.Slider, {"minimum": 0.01, "maximum": 1.0, "step": 0.01}, infotext='Beta scheduler alpha').info('Default = 0.6; the alpha parameter of the beta distribution used in Beta sampling'),
+ 'beta_dist_beta': OptionInfo(0.6, "Beta scheduler - beta", gr.Slider, {"minimum": 0.01, "maximum": 1.0, "step": 0.01}, infotext='Beta scheduler beta').info('Default = 0.6; the beta parameter of the beta distribution used in Beta sampling'),
}))
options_templates.update(options_section(('postprocessing', "Postprocessing", "postprocessing"), {
diff --git a/modules/shared_state.py b/modules/shared_state.py
index 75b617ebfcf..c40caca0d3c 100644
--- a/modules/shared_state.py
+++ b/modules/shared_state.py
@@ -162,7 +162,7 @@ def do_set_current_image(self):
errors.record_exception()
def assign_current_image(self, image):
- if shared.opts.live_previews_image_format == 'jpeg' and image.mode == 'RGBA':
+ if shared.opts.live_previews_image_format == 'jpeg' and image.mode in ('RGBA', 'P'):
image = image.convert('RGB')
self.current_image = image
self.id_live_preview += 1
diff --git a/modules/sysinfo.py b/modules/sysinfo.py
index 5ef7dee2077..e9a83d74e03 100644
--- a/modules/sysinfo.py
+++ b/modules/sysinfo.py
@@ -1,15 +1,13 @@
import json
import os
import sys
-
+import subprocess
import platform
import hashlib
-import pkg_resources
-import psutil
import re
+from pathlib import Path
-import launch
-from modules import paths_internal, timer, shared, extensions, errors, devices
+from modules import paths_internal, timer, shared_cmd_options, errors, launch_utils
checksum_token = "DontStealMyGamePlz__WINNERS_DONT_USE_DRUGS__DONT_COPY_THAT_FLOPPY"
environment_whitelist = {
@@ -69,20 +67,46 @@ def check(x):
return h.hexdigest() == m.group(1)
-def get_dict():
- ram = psutil.virtual_memory()
- gpu = None
+def get_cpu_info():
+ cpu_info = {"model": platform.processor()}
try:
- from modules.dml.device_properties import DeviceProperties
- gpu = DeviceProperties(devices.device)
- except Exception:
- pass
+ import psutil
+ cpu_info["count logical"] = psutil.cpu_count(logical=True)
+ cpu_info["count physical"] = psutil.cpu_count(logical=False)
+ except Exception as e:
+ cpu_info["error"] = str(e)
+ return cpu_info
+
+def get_ram_info():
+ try:
+ import psutil
+ ram = psutil.virtual_memory()
+ return {x: pretty_bytes(getattr(ram, x, 0)) for x in ["total", "used", "free", "active", "inactive", "buffers", "cached", "shared"] if getattr(ram, x, 0) != 0}
+ except Exception as e:
+ return str(e)
+
+
+def get_packages():
+ try:
+ return subprocess.check_output([sys.executable, '-m', 'pip', 'freeze', '--all']).decode("utf8").splitlines()
+ except Exception as pip_error:
+ try:
+ import importlib.metadata
+ packages = importlib.metadata.distributions()
+ return sorted([f"{package.metadata['Name']}=={package.version}" for package in packages])
+ except Exception as e2:
+ return {'error pip': pip_error, 'error importlib': str(e2)}
+
+
+def get_dict():
+ config = get_config()
res = {
"Platform": platform.platform(),
"Python": platform.python_version(),
- "Version": launch.git_tag(),
- "Commit": launch.commit_hash(),
+ "Version": launch_utils.git_tag(),
+ "Commit": launch_utils.commit_hash(),
+ "Git status": git_status(paths_internal.script_path),
"Script path": paths_internal.script_path,
"Data path": paths_internal.data_path,
"Extensions dir": paths_internal.extensions_dir,
@@ -90,24 +114,14 @@ def get_dict():
"Commandline": get_argv(),
"Torch env info": get_torch_sysinfo(),
"Exceptions": errors.get_exceptions(),
- "CPU": {
- "model": platform.processor(),
- "count logical": psutil.cpu_count(logical=True),
- "count physical": psutil.cpu_count(logical=False),
- },
- "RAM": {
- x: pretty_bytes(getattr(ram, x, 0)) for x in ["total", "used", "free", "active", "inactive", "buffers", "cached", "shared"] if getattr(ram, x, 0) != 0
- },
- "GPU": "DirectML is not initialized" if gpu is None else {
- "model": gpu.name,
- "total_memory": gpu.total_memory,
- },
- "Extensions": get_extensions(enabled=True),
- "Inactive extensions": get_extensions(enabled=False),
+ "CPU": get_cpu_info(),
+ "RAM": get_ram_info(),
+ "Extensions": get_extensions(enabled=True, fallback_disabled_extensions=config.get('disabled_extensions', [])),
+ "Inactive extensions": get_extensions(enabled=False, fallback_disabled_extensions=config.get('disabled_extensions', [])),
"Environment": get_environment(),
- "Config": get_config(),
+ "Config": config,
"Startup": timer.startup_record,
- "Packages": sorted([f"{pkg.key}=={pkg.version}" for pkg in pkg_resources.working_set]),
+ "Packages": get_packages(),
}
return res
@@ -121,11 +135,11 @@ def get_argv():
res = []
for v in sys.argv:
- if shared.cmd_opts.gradio_auth and shared.cmd_opts.gradio_auth == v:
+ if shared_cmd_options.cmd_opts.gradio_auth and shared_cmd_options.cmd_opts.gradio_auth == v:
res.append("")
continue
- if shared.cmd_opts.api_auth and shared.cmd_opts.api_auth == v:
+ if shared_cmd_options.cmd_opts.api_auth and shared_cmd_options.cmd_opts.api_auth == v:
res.append("")
continue
@@ -133,6 +147,7 @@ def get_argv():
return res
+
re_newline = re.compile(r"\r*\n")
@@ -146,25 +161,55 @@ def get_torch_sysinfo():
return str(e)
-def get_extensions(*, enabled):
+def run_git(path, *args):
+ try:
+ return subprocess.check_output([launch_utils.git, '-C', path, *args], shell=False, encoding='utf8').strip()
+ except Exception as e:
+ return str(e)
+
+
+def git_status(path):
+ if (Path(path) / '.git').is_dir():
+ return run_git(paths_internal.script_path, 'status')
+
+def get_info_from_repo_path(path: Path):
+ is_repo = (path / '.git').is_dir()
+ return {
+ 'name': path.name,
+ 'path': str(path),
+ 'commit': run_git(path, 'rev-parse', 'HEAD') if is_repo else None,
+ 'branch': run_git(path, 'branch', '--show-current') if is_repo else None,
+ 'remote': run_git(path, 'remote', 'get-url', 'origin') if is_repo else None,
+ }
+
+
+def get_extensions(*, enabled, fallback_disabled_extensions=None):
try:
- def to_json(x: extensions.Extension):
- return {
- "name": x.name,
- "path": x.path,
- "version": x.version,
- "branch": x.branch,
- "remote": x.remote,
- }
-
- return [to_json(x) for x in extensions.extensions if not x.is_builtin and x.enabled == enabled]
+ from modules import extensions
+ if extensions.extensions:
+ def to_json(x: extensions.Extension):
+ return {
+ "name": x.name,
+ "path": x.path,
+ "commit": x.commit_hash,
+ "branch": x.branch,
+ "remote": x.remote,
+ }
+ return [to_json(x) for x in extensions.extensions if not x.is_builtin and x.enabled == enabled]
+ else:
+ return [get_info_from_repo_path(d) for d in Path(paths_internal.extensions_dir).iterdir() if d.is_dir() and enabled != (str(d.name) in fallback_disabled_extensions)]
except Exception as e:
return str(e)
def get_config():
try:
+ from modules import shared
return shared.opts.data
- except Exception as e:
- return str(e)
+ except Exception as _:
+ try:
+ with open(shared_cmd_options.cmd_opts.ui_settings_file, 'r') as f:
+ return json.load(f)
+ except Exception as e:
+ return str(e)
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 9ec4374e707..0d3a1714f05 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -183,12 +183,16 @@ def load_from_file(self, path, filename):
else:
return
- embedding = create_embedding_from_data(data, name, filename=filename, filepath=path)
+ if data is not None:
+ embedding = create_embedding_from_data(data, name, filename=filename, filepath=path)
- if self.expected_shape == -1 or self.expected_shape == embedding.shape:
- self.register_embedding(embedding, shared.sd_model)
+ if self.expected_shape == -1 or self.expected_shape == embedding.shape:
+ self.register_embedding(embedding, shared.sd_model)
+ else:
+ self.skipped_embeddings[name] = embedding
else:
- self.skipped_embeddings[name] = embedding
+ print(f"Unable to load Textual inversion embedding due to data issue: '{name}'.")
+
def load_from_dir(self, embdir):
if not os.path.isdir(embdir.path):
diff --git a/modules/torch_utils.py b/modules/torch_utils.py
index e5b52393ec8..5ea3da094c5 100644
--- a/modules/torch_utils.py
+++ b/modules/torch_utils.py
@@ -1,6 +1,7 @@
from __future__ import annotations
import torch.nn
+import torch
def get_param(model) -> torch.nn.Parameter:
@@ -15,3 +16,10 @@ def get_param(model) -> torch.nn.Parameter:
return param
raise ValueError(f"No parameters found in model {model!r}")
+
+
+def float64(t: torch.Tensor):
+ """return torch.float64 if device is not mps or xpu, else return torch.float32"""
+ if t.device.type in ['mps', 'xpu']:
+ return torch.float32
+ return torch.float64
diff --git a/modules/ui.py b/modules/ui.py
index 24ea337b077..a6a5278bdcc 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -10,7 +10,7 @@
import gradio.utils
import numpy as np
from PIL import Image, PngImagePlugin # noqa: F401
-from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call
+from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call, wrap_gradio_call_no_job # noqa: F401
from modules import gradio_extensons, sd_schedulers # noqa: F401
from modules import sd_hijack, sd_models, script_callbacks, ui_extensions, deepbooru, extra_networks, ui_common, ui_postprocessing, progress, ui_loadsave, shared_items, ui_settings, timer, sysinfo, ui_checkpoint_merger, scripts, sd_samplers, processing, ui_extra_networks, ui_toprow, launch_utils
@@ -42,10 +42,12 @@
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI
mimetypes.init()
-mimetypes.add_type("application/javascript", ".js")
+mimetypes.add_type('application/javascript', '.js')
+mimetypes.add_type('application/javascript', '.mjs')
# Likewise, add explicit content-type header for certain missing image types
-mimetypes.add_type("image/webp", ".webp")
+mimetypes.add_type('image/webp', '.webp')
+mimetypes.add_type('image/avif', '.avif')
if not cmd_opts.share and not cmd_opts.listen:
# fix gradio phoning home
@@ -774,18 +776,25 @@ def update_orig(image, state):
init_mask_inpaint = gr.Image(label="Mask", source="upload", interactive=True, type="pil", image_mode="RGBA", elem_id="img_inpaint_mask")
with gr.TabItem('Batch', id='batch', elem_id="img2img_batch_tab") as tab_batch:
- hidden = '
Disabled when launched with --hide-ui-dir-config.' if shared.cmd_opts.hide_ui_dir_config else ''
- gr.HTML(
- "Process images in a directory on the same machine where the server is running." +
- "
Use an empty output directory to save pictures normally instead of writing to the output directory." +
- f"
Add inpaint batch mask directory to enable inpaint batch processing."
- f"{hidden}
"
- )
- img2img_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, elem_id="img2img_batch_input_dir")
- img2img_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, elem_id="img2img_batch_output_dir")
- img2img_batch_inpaint_mask_dir = gr.Textbox(label="Inpaint batch mask directory (required for inpaint batch processing only)", **shared.hide_dirs, elem_id="img2img_batch_inpaint_mask_dir")
+ with gr.Tabs(elem_id="img2img_batch_source"):
+ img2img_batch_source_type = gr.Textbox(visible=False, value="upload")
+ with gr.TabItem('Upload', id='batch_upload', elem_id="img2img_batch_upload_tab") as tab_batch_upload:
+ img2img_batch_upload = gr.Files(label="Files", interactive=True, elem_id="img2img_batch_upload")
+ with gr.TabItem('From directory', id='batch_from_dir', elem_id="img2img_batch_from_dir_tab") as tab_batch_from_dir:
+ hidden = '
Disabled when launched with --hide-ui-dir-config.' if shared.cmd_opts.hide_ui_dir_config else ''
+ gr.HTML(
+ "Process images in a directory on the same machine where the server is running." +
+ "
Use an empty output directory to save pictures normally instead of writing to the output directory." +
+ f"
Add inpaint batch mask directory to enable inpaint batch processing."
+ f"{hidden}
"
+ )
+ img2img_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, elem_id="img2img_batch_input_dir")
+ img2img_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, elem_id="img2img_batch_output_dir")
+ img2img_batch_inpaint_mask_dir = gr.Textbox(label="Inpaint batch mask directory (required for inpaint batch processing only)", **shared.hide_dirs, elem_id="img2img_batch_inpaint_mask_dir")
+ tab_batch_upload.select(fn=lambda: "upload", inputs=[], outputs=[img2img_batch_source_type])
+ tab_batch_from_dir.select(fn=lambda: "from dir", inputs=[], outputs=[img2img_batch_source_type])
with gr.Accordion("PNG info", open=False):
- img2img_batch_use_png_info = gr.Checkbox(label="Append png info to prompts", **shared.hide_dirs, elem_id="img2img_batch_use_png_info")
+ img2img_batch_use_png_info = gr.Checkbox(label="Append png info to prompts", elem_id="img2img_batch_use_png_info")
img2img_batch_png_info_dir = gr.Textbox(label="PNG info directory", **shared.hide_dirs, placeholder="Leave empty to use input directory", elem_id="img2img_batch_png_info_dir")
img2img_batch_png_info_props = gr.CheckboxGroup(["Prompt", "Negative prompt", "Seed", "CFG scale", "Sampler", "Steps", "Model hash"], label="Parameters to take from png info", info="Prompts from png info will be appended to prompts set in ui.")
@@ -821,11 +830,8 @@ def copy_image(img):
with gr.Column(elem_id="img2img_column_size", scale=4):
selected_scale_tab = gr.Number(value=0, visible=False)
- with gr.Tabs():
- with gr.Tab(
- label="Resize to",
- elem_id="img2img_tab_resize_to",
- ) as tab_scale_to:
+ with gr.Tabs(elem_id="img2img_tabs_resize"):
+ with gr.Tab(label="Resize to", id="to", elem_id="img2img_tab_resize_to") as tab_scale_to:
with FormRow():
with gr.Column(elem_id="img2img_column_size", scale=4):
width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="img2img_width")
@@ -834,18 +840,8 @@ def copy_image(img):
res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="img2img_res_switch_btn", tooltip="Switch width/height")
detect_image_size_btn = ToolButton(value=detect_image_size_symbol, elem_id="img2img_detect_image_size_btn", tooltip="Auto detect size from img2img")
- with gr.Tab(
- label="Resize by",
- elem_id="img2img_tab_resize_by",
- ) as tab_scale_by:
- scale_by = gr.Slider(
- minimum=0.05,
- maximum=4.0,
- step=0.05,
- label="Scale",
- value=1.0,
- elem_id="img2img_scale",
- )
+ with gr.Tab(label="Resize by", id="by", elem_id="img2img_tab_resize_by") as tab_scale_by:
+ scale_by = gr.Slider(minimum=0.05, maximum=4.0, step=0.05, label="Scale", value=1.0, elem_id="img2img_scale")
with FormRow():
scale_by_html = FormHTML(
@@ -1090,8 +1086,9 @@ def select_img2img_tab(tab):
img2img_batch_use_png_info,
img2img_batch_png_info_props,
img2img_batch_png_info_dir,
- ]
- + custom_inputs,
+ img2img_batch_source_type,
+ img2img_batch_upload,
+ ] + custom_inputs,
outputs=[
output_panel.gallery,
output_panel.generation_info,
@@ -1239,7 +1236,7 @@ def select_img2img_tab(tab):
)
image.change(
- fn=wrap_gradio_call(modules.extras.run_pnginfo),
+ fn=wrap_gradio_call_no_job(modules.extras.run_pnginfo),
inputs=[image],
outputs=[html, generation_info, html2],
)
diff --git a/modules/ui_common.py b/modules/ui_common.py
index 48992a3c121..395bb3b61ee 100644
--- a/modules/ui_common.py
+++ b/modules/ui_common.py
@@ -3,6 +3,7 @@
import json
import html
import os
+from contextlib import nullcontext
import gradio as gr
@@ -103,14 +104,15 @@ def __init__(self, d=None):
# NOTE: ensure csv integrity when fields are added by
# updating headers and padding with delimiters where needed
- if os.path.exists(logfile_path):
+ if shared.opts.save_write_log_csv and os.path.exists(logfile_path):
update_logfile(logfile_path, fields)
- with open(logfile_path, "a", encoding="utf8", newline='') as file:
- at_start = file.tell() == 0
- writer = csv.writer(file)
- if at_start:
- writer.writerow(fields)
+ with (open(logfile_path, "a", encoding="utf8", newline='') if shared.opts.save_write_log_csv else nullcontext()) as file:
+ if file:
+ at_start = file.tell() == 0
+ writer = csv.writer(file)
+ if at_start:
+ writer.writerow(fields)
for image_index, filedata in enumerate(images, start_index):
image = image_from_url_text(filedata)
@@ -130,7 +132,8 @@ def __init__(self, d=None):
filenames.append(os.path.basename(txt_fullfn))
fullfns.append(txt_fullfn)
- writer.writerow([parsed_infotexts[0]['Prompt'], parsed_infotexts[0]['Seed'], data["width"], data["height"], data["sampler_name"], data["cfg_scale"], data["steps"], filenames[0], parsed_infotexts[0]['Negative prompt'], data["sd_model_name"], data["sd_model_hash"]])
+ if file:
+ writer.writerow([parsed_infotexts[0]['Prompt'], parsed_infotexts[0]['Seed'], data["width"], data["height"], data["sampler_name"], data["cfg_scale"], data["steps"], filenames[0], parsed_infotexts[0]['Negative prompt'], data["sd_model_name"], data["sd_model_hash"]])
# Make Zip
if do_make_zip:
@@ -228,7 +231,7 @@ def open_folder(f, images=None, index=None):
)
save.click(
- fn=call_queue.wrap_gradio_call(save_files),
+ fn=call_queue.wrap_gradio_call_no_job(save_files),
_js="(x, y, z, w) => [x, y, false, selected_gallery_index()]",
inputs=[
res.generation_info,
@@ -244,7 +247,7 @@ def open_folder(f, images=None, index=None):
)
save_zip.click(
- fn=call_queue.wrap_gradio_call(save_files),
+ fn=call_queue.wrap_gradio_call_no_job(save_files),
_js="(x, y, z, w) => [x, y, true, selected_gallery_index()]",
inputs=[
res.generation_info,
diff --git a/modules/ui_extensions.py b/modules/ui_extensions.py
index d822c0b8920..23aff709627 100644
--- a/modules/ui_extensions.py
+++ b/modules/ui_extensions.py
@@ -396,15 +396,15 @@ def install_extension_from_url(dirname, url, branch_name=None):
shutil.rmtree(tmpdir, True)
-def install_extension_from_index(url, hide_tags, sort_column, filter_text):
+def install_extension_from_index(url, selected_tags, showing_type, filtering_type, sort_column, filter_text):
ext_table, message = install_extension_from_url(None, url)
- code, _ = refresh_available_extensions_from_data(hide_tags, sort_column, filter_text)
+ code, _ = refresh_available_extensions_from_data(selected_tags, showing_type, filtering_type, sort_column, filter_text)
return code, ext_table, message, ''
-def refresh_available_extensions(url, hide_tags, sort_column):
+def refresh_available_extensions(url, selected_tags, showing_type, filtering_type, sort_column):
global available_extensions
import urllib.request
@@ -413,19 +413,19 @@ def refresh_available_extensions(url, hide_tags, sort_column):
available_extensions = json.loads(text)
- code, tags = refresh_available_extensions_from_data(hide_tags, sort_column)
+ code, tags = refresh_available_extensions_from_data(selected_tags, showing_type, filtering_type, sort_column)
return url, code, gr.CheckboxGroup.update(choices=tags), '', ''
-def refresh_available_extensions_for_tags(hide_tags, sort_column, filter_text):
- code, _ = refresh_available_extensions_from_data(hide_tags, sort_column, filter_text)
+def refresh_available_extensions_for_tags(selected_tags, showing_type, filtering_type, sort_column, filter_text):
+ code, _ = refresh_available_extensions_from_data(selected_tags, showing_type, filtering_type, sort_column, filter_text)
return code, ''
-def search_extensions(filter_text, hide_tags, sort_column):
- code, _ = refresh_available_extensions_from_data(hide_tags, sort_column, filter_text)
+def search_extensions(filter_text, selected_tags, showing_type, filtering_type, sort_column):
+ code, _ = refresh_available_extensions_from_data(selected_tags, showing_type, filtering_type, sort_column, filter_text)
return code, ''
@@ -450,13 +450,13 @@ def get_date(info: dict, key):
return ''
-def refresh_available_extensions_from_data(hide_tags, sort_column, filter_text=""):
+def refresh_available_extensions_from_data(selected_tags, showing_type, filtering_type, sort_column, filter_text=""):
extlist = available_extensions["extensions"]
installed_extensions = {extension.name for extension in extensions.extensions}
installed_extension_urls = {normalize_git_url(extension.remote) for extension in extensions.extensions if extension.remote is not None}
tags = available_extensions.get("tags", {})
- tags_to_hide = set(hide_tags)
+ selected_tags = set(selected_tags)
hidden = 0
code = f"""
@@ -489,9 +489,19 @@ def refresh_available_extensions_from_data(hide_tags, sort_column, filter_text="
existing = get_extension_dirname_from_url(url) in installed_extensions or normalize_git_url(url) in installed_extension_urls
extension_tags = extension_tags + ["installed"] if existing else extension_tags
- if any(x for x in extension_tags if x in tags_to_hide):
- hidden += 1
- continue
+ if len(selected_tags) > 0:
+ matched_tags = [x for x in extension_tags if x in selected_tags]
+ if filtering_type == 'or':
+ need_hide = len(matched_tags) > 0
+ else:
+ need_hide = len(matched_tags) == len(selected_tags)
+
+ if showing_type == 'show':
+ need_hide = not need_hide
+
+ if need_hide:
+ hidden += 1
+ continue
if filter_text and filter_text.strip():
if filter_text.lower() not in html.escape(name).lower() and filter_text.lower() not in html.escape(description).lower():
@@ -594,8 +604,12 @@ def create_ui():
install_extension_button = gr.Button(elem_id="install_extension_button", visible=False)
with gr.Row():
- hide_tags = gr.CheckboxGroup(value=["ads", "localization", "installed"], label="Hide extensions with tags", choices=["script", "ads", "localization", "installed"])
- sort_column = gr.Radio(value="newest first", label="Order", choices=["newest first", "oldest first", "a-z", "z-a", "internal order",'update time', 'create time', "stars"], type="index")
+ selected_tags = gr.CheckboxGroup(value=["ads", "localization", "installed"], label="Extension tags", choices=["script", "ads", "localization", "installed"], elem_classes=['compact-checkbox-group'])
+ sort_column = gr.Radio(value="newest first", label="Order", choices=["newest first", "oldest first", "a-z", "z-a", "internal order",'update time', 'create time', "stars"], type="index", elem_classes=['compact-checkbox-group'])
+
+ with gr.Row():
+ showing_type = gr.Radio(value="hide", label="Showing type", choices=["hide", "show"], elem_classes=['compact-checkbox-group'])
+ filtering_type = gr.Radio(value="or", label="Filtering type", choices=["or", "and"], elem_classes=['compact-checkbox-group'])
with gr.Row():
search_extensions_text = gr.Text(label="Search", container=False)
@@ -605,31 +619,43 @@ def create_ui():
refresh_available_extensions_button.click(
fn=modules.ui.wrap_gradio_call(refresh_available_extensions, extra_outputs=[gr.update(), gr.update(), gr.update(), gr.update()]),
- inputs=[available_extensions_index, hide_tags, sort_column],
- outputs=[available_extensions_index, available_extensions_table, hide_tags, search_extensions_text, install_result],
+ inputs=[available_extensions_index, selected_tags, showing_type, filtering_type, sort_column],
+ outputs=[available_extensions_index, available_extensions_table, selected_tags, search_extensions_text, install_result],
)
install_extension_button.click(
- fn=modules.ui.wrap_gradio_call(install_extension_from_index, extra_outputs=[gr.update(), gr.update()]),
- inputs=[extension_to_install, hide_tags, sort_column, search_extensions_text],
+ fn=modules.ui.wrap_gradio_call_no_job(install_extension_from_index, extra_outputs=[gr.update(), gr.update()]),
+ inputs=[extension_to_install, selected_tags, showing_type, filtering_type, sort_column, search_extensions_text],
outputs=[available_extensions_table, extensions_table, install_result],
)
search_extensions_text.change(
- fn=modules.ui.wrap_gradio_call(search_extensions, extra_outputs=[gr.update()]),
- inputs=[search_extensions_text, hide_tags, sort_column],
+ fn=modules.ui.wrap_gradio_call_no_job(search_extensions, extra_outputs=[gr.update()]),
+ inputs=[search_extensions_text, selected_tags, showing_type, filtering_type, sort_column],
outputs=[available_extensions_table, install_result],
)
- hide_tags.change(
- fn=modules.ui.wrap_gradio_call(refresh_available_extensions_for_tags, extra_outputs=[gr.update()]),
- inputs=[hide_tags, sort_column, search_extensions_text],
+ selected_tags.change(
+ fn=modules.ui.wrap_gradio_call_no_job(refresh_available_extensions_for_tags, extra_outputs=[gr.update()]),
+ inputs=[selected_tags, showing_type, filtering_type, sort_column, search_extensions_text],
+ outputs=[available_extensions_table, install_result]
+ )
+
+ showing_type.change(
+ fn=modules.ui.wrap_gradio_call_no_job(refresh_available_extensions_for_tags, extra_outputs=[gr.update()]),
+ inputs=[selected_tags, showing_type, filtering_type, sort_column, search_extensions_text],
+ outputs=[available_extensions_table, install_result]
+ )
+
+ filtering_type.change(
+ fn=modules.ui.wrap_gradio_call_no_job(refresh_available_extensions_for_tags, extra_outputs=[gr.update()]),
+ inputs=[selected_tags, showing_type, filtering_type, sort_column, search_extensions_text],
outputs=[available_extensions_table, install_result]
)
sort_column.change(
- fn=modules.ui.wrap_gradio_call(refresh_available_extensions_for_tags, extra_outputs=[gr.update()]),
- inputs=[hide_tags, sort_column, search_extensions_text],
+ fn=modules.ui.wrap_gradio_call_no_job(refresh_available_extensions_for_tags, extra_outputs=[gr.update()]),
+ inputs=[selected_tags, showing_type, filtering_type, sort_column, search_extensions_text],
outputs=[available_extensions_table, install_result]
)
@@ -641,7 +667,7 @@ def create_ui():
install_result = gr.HTML(elem_id="extension_install_result")
install_button.click(
- fn=modules.ui.wrap_gradio_call(lambda *args: [gr.update(), *install_extension_from_url(*args)], extra_outputs=[gr.update(), gr.update()]),
+ fn=modules.ui.wrap_gradio_call_no_job(lambda *args: [gr.update(), *install_extension_from_url(*args)], extra_outputs=[gr.update(), gr.update()]),
inputs=[install_dirname, install_url, install_branch],
outputs=[install_url, extensions_table, install_result],
)
diff --git a/modules/ui_extra_networks_user_metadata.py b/modules/ui_extra_networks_user_metadata.py
index fde093700b8..3a07db10542 100644
--- a/modules/ui_extra_networks_user_metadata.py
+++ b/modules/ui_extra_networks_user_metadata.py
@@ -194,7 +194,7 @@ def save_preview(self, index, gallery, name):
def setup_ui(self, gallery):
self.button_replace_preview.click(
fn=self.save_preview,
- _js="function(x, y, z){return [selected_gallery_index(), y, z]}",
+ _js=f"function(x, y, z){{return [selected_gallery_index_id('{self.tabname + '_gallery_container'}'), y, z]}}",
inputs=[self.edit_name_input, gallery, self.edit_name_input],
outputs=[self.html_preview, self.html_status]
).then(
diff --git a/modules/ui_gradio_extensions.py b/modules/ui_gradio_extensions.py
index f5278d22f02..ed57c1e9896 100644
--- a/modules/ui_gradio_extensions.py
+++ b/modules/ui_gradio_extensions.py
@@ -41,6 +41,11 @@ def stylesheet(fn):
if os.path.exists(user_css):
head += stylesheet(user_css)
+ from modules.shared_gradio_themes import resolve_var
+ light = resolve_var('background_fill_primary')
+ dark = resolve_var('background_fill_primary_dark')
+ head += f''
+
return head
@@ -50,7 +55,7 @@ def reload_javascript():
def template_response(*args, **kwargs):
res = shared.GradioTemplateResponseOriginal(*args, **kwargs)
- res.body = res.body.replace(b'', f'{js}'.encode("utf8"))
+ res.body = res.body.replace(b'', f'{js}'.encode("utf8"))
res.body = res.body.replace(b'