-
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathTrain.py
110 lines (84 loc) · 4.45 KB
/
Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import numpy as np
import torch
from torch.utils.data import Dataset
from statistics import mean
from Loss_Function import *
import os
from torch import autograd
from Random_Support import write_w2
'''
zeroboundaryloss --- Returns a vector of 0s of the same length as input
Parameters ---------- x ---- input points
'''
def zeroboundaryloss(x):
return torch.zeros((x.shape[0], 1)).type(torch.FloatTensor).cuda()
'''
init_weights --------- Initializes the weights of the neural network. Weights and Biases of ICNN are initialized using
a very small gaussian centered around 0.
Parameters ----------- m ------ modules in the network
Use as --------------- model.apply(init_weights)
'''
def init_weights(m):
with torch.no_grad():
if type(m) == torch.nn.Linear:
m.weight.normal_(0, 0.01)
m.bias.normal_(0, 0.01)
'''
train_network -------- Trains and returns a network with the specified conditions
Parameters ----------- data ----------------------- data set to be used for training.
model ---------------------- model that needs to be trained
loss_func ------------------ Function to compute the loss.
criterion ------------------ Function to compare targets with the loss.ex, MSE, Identity
n_epoch -------------------- number of epochs to train for
func_f --------------------- function f as stated in our formulation
func_g --------------------- function g as stated in our formulation
constant ------------------- normalisation constant if you want to normalise functions f and g
k -------------------------- Regularisation constant
save_e --------------------- Save the model in multiples of this variable
path ----------------------- Location to save the models
init_weights_flag ---------- If you want to initialize the weights or not
initial_path --------------- If we do not initialize weights then the path of the model that has
to be taken as the starting point of the training.
periodic_Flag -------------- Flag to wrap points that go out of domain
cinn_flag ------------------ Flag to indicate whether the model is a CINN to impose convexity
constraints,
deformation_flag ----------- True -------- diffeo given by x + grad(network)
False ------- diffeo given by grad(network)
'''
def train_network(data, model, loss_func, criterion, n_epoch, func_f, func_g, constant, k, save_e, path,
init_weights_flag=True, initial_path=None, periodic_Flag=False, cinn_flag=False,
deformation_flag=False, Barrier_Flag=False, mu=None, cov=None, w2_flag=False):
if not os.path.exists(path):
os.mkdir(path)
train_loader = torch.utils.data.DataLoader(data, shuffle=True, batch_size=1024, num_workers=8)
if init_weights_flag:
model.apply(init_weights)
else:
model.load(initial_path)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# if cinn_flag:
model.make_convex()
for epoch in range(1, n_epoch+1):
epoch_loss = []
for i, (x, y, flag) in enumerate(train_loader):
x = torch.squeeze(x.type(torch.FloatTensor), 1).cuda()
x = x.detach().requires_grad_()
y = torch.squeeze(y.type(torch.FloatTensor), 1).cuda()
flag = torch.squeeze(flag.type(torch.FloatTensor), 1).cuda()
outputs = model(x)
error = loss_func(x, outputs, flag, zeroboundaryloss, func_f, func_g, constant, k, periodic_Flag, 0, deformation_flag)
if Barrier_Flag:
error = Barrier_loss(error, model)
loss = criterion(error, y)
optimizer.zero_grad()
loss.backward()
epoch_loss.append(loss.item())
optimizer.step()
if cinn_flag:
model.project()
print('Loss after Epoch {} is : {}'.format(epoch, mean(epoch_loss)))
if epoch % save_e == 0:
model.save(path, 'e_' + str(epoch))
if w2_flag:
write_w2(x.shape[1], path, model, epoch, mu, cov)
return model