-
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathDraw_Grpahs.py
304 lines (234 loc) · 10.1 KB
/
Draw_Grpahs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
'''
Copyright 2020 Amanpreet Singh,
Martin Bauer,
Sarang Joshi
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
'''
from PDE import *
import matplotlib.pyplot as plt
import numpy as np
'''
run_in_batches ------ Divides the input in batches and computes the Jacobian Determinant on that.
Parameters ---- x ------------ Input, which is the array of points
f ------------ Function g, which is the unit gaussian in our formulation
num_batches -- Number of batches you want to divide the input in.
p_flag ------- Periodic boundary flag
norm_const --- In case you want to scale function g.
flag --------- Diffeo formulation flag
model -------- Network on GPU. Can be CINNs or simple fully connected network.
'''
def run_in_batches(x, f, num_batches, p_flag, norm_const, flag, model):
torch.cuda.empty_cache()
x = x.detach().cpu().numpy()
start_pt = 0
jump = int(x.shape[0]/num_batches)
end_pt = jump
ret = np.zeros_like(x[:, 0])
for i in range(num_batches):
torch.cuda.empty_cache()
temp = torch.from_numpy(x[start_pt:end_pt, :]).cuda()
temp = temp.requires_grad_()
results_temp = model(temp)
ret[start_pt:end_pt] = Jac_Det(results_temp, temp, f, norm_const, p_flag, flag).detach().cpu().numpy()
start_pt += jump
end_pt += jump
if end_pt > x.shape[0]:
end_pt = x.shape[0]
return ret
'''
grad_in_batches ------ Divides the input in batches and computes the gradient of the network on it.
Parameters ---- x ------------ Input, which is the array of points
num_batches -- Number of batches you want to divide the input in.
model -------- Network on GPU. Can be CINNs or simple fully connected network.
'''
def grad_in_batches(x, num_batches, model):
x = x.detach().cpu().numpy()
start_pt = 0
jump = int(x.shape[0] / num_batches)
end_pt = jump
ret = np.zeros_like(x)
for i in range(num_batches):
torch.cuda.empty_cache()
temp = torch.from_numpy(x[start_pt:end_pt, :]).cuda()
temp = temp.requires_grad_()
results_temp = model(temp)
ret[start_pt:end_pt, :] = grad(results_temp.sum(), temp, create_graph=True, retain_graph=True)[0].detach().cpu().numpy()
start_pt += jump
end_pt += jump
if end_pt > x.shape[0]:
end_pt = x.shape[0]
torch.cuda.empty_cache()
return ret[:, 0], ret[:, 1]
'''
draw_graphs ------ Draws all the graphs for the given input, for continuous formulation
Parameters ---- y ------------ Input, which is the array of points
model -------- Network on GPU. Can be CINNs or simple fully connected network.
graph_path --- Folder location where to draw all graphs.
func_f ------- Function f, which is only used in the continuous formulation
func_g ------- Function g, which is the unit gaussian in our formulation
norm_const --- In case you want to scale function g.
period_Boundary_Flag ------- Periodic boundary flag
'''
def draw_graphs(y, model, graph_path, func_f, func_g, norm_const, period_Boundary_Flag):
num_batches = 5
y1 = y.detach().cpu().numpy()
hx = y1[:, 0].reshape(500, 500)
hy = y1[:, 1].reshape(500, 500)
hx1 = hx[0:-1:10, 0:-1:10]
hy1 = hy[0:-1:10, 0:-1:10]
plt.figure()
plt.plot(hx1, hy1)
plt.plot(np.transpose(hx1), np.transpose(hy1))
plt.ylim(-2, 2)
plt.xlim(-2, 2)
plt.savefig(graph_path + 'testing_data.png')
plt.close()
# f = func_f(y, norm_const).cpu().numpy()
# im = f.reshape(500, 500)
#
# # plt.figure(figsize=(10, 10))
# ax = plt.gca()
# x = plt.imshow(im)
# # divider = make_axes_locatable(ax)
# # cax = divider.append_axes("right", size="10%", pad=0.1)
# #
# plt.colorbar(x)
# # plt.gca().invert_yaxis()
# plt.axis('off')
# plt.savefig(graph_path + 'f.png')
# plt.close()
g = func_g(y, norm_const).cpu().numpy()
im = g.reshape(500, 500)
plt.figure()
plt.imshow(np.flipud(np.rot90(im)), origin='lower')
plt.colorbar()
# plt.gca().invert_yaxis()
plt.axis('off')
plt.savefig(graph_path + 'g.png')
plt.close()
y = y.detach().requires_grad_()
results = model(y)
results1 = results.detach().cpu().numpy()
im = results1.reshape(500, 500)
plt.figure()
plt.imshow(im, origin='lower')
plt.colorbar()
# plt.gca().invert_yaxis()
plt.axis('off')
plt.savefig(graph_path + 'u.png')
plt.close()
# dy, = grad(results.sum(), y, create_graph=True, retain_graph=True)
du_x, du_y = grad_in_batches(y, num_batches, model)
# du_x = du_x.detach().cpu().numpy()
# du_y = du_y.detach().cpu().numpy()
du_x = du_x.reshape(500, 500)
du_y = du_y.reshape(500, 500)
grad_x = du_x[0:-1:10, 0:-1:10]
grad_y = du_y[0:-1:10, 0:-1:10]
# plt.figure()
# plt.plot(grad_x, grad_y)
# plt.plot(np.transpose(grad_x), np.transpose(grad_y))
# plt.ylim(-2, 2)
# plt.xlim(-2, 2)
# plt.savefig(graph_path + 'deformation.png')
# plt.close()
fig = plt.figure(frameon=False)
ax = plt.Axes(fig, [0, 0, 1, 1])
ax.set_axis_off()
fig.add_axes(ax)
ax.plot(grad_x, grad_y)
ax.plot(np.transpose(grad_x), np.transpose(grad_y))
ax.set_xlim(-2, 2)
ax.set_ylim(-2, 2)
fig.savefig(graph_path + 'Approximated_Deformation.png')
plt.close(fig)
g_jac_det = run_in_batches(y, func_g, num_batches, period_Boundary_Flag, norm_const, True, model)
g_jac_det = g_jac_det.reshape(500, 500)
# plt.figure()
# plt.imshow(np.flipud(np.rot90(g_jac_det)), origin='lower')
# plt.colorbar()
# # plt.gca().invert_yaxis()
# plt.axis('off')
# plt.savefig(graph_path + 'g_jac_det.png')
# plt.close()
fig = plt.figure(frameon=False)
ax = plt.Axes(fig, [0, 0, 1, 1])
ax.set_axis_off()
fig.add_axes(ax)
ax.imshow(np.flipud(np.rot90(g_jac_det)), origin='lower')
fig.savefig(graph_path + 'Density_Approximation.png')
plt.close(fig)
del results, du_x, du_y, g, grad_x, grad_y, hx, hx1, hy, hy1, y, g_jac_det, im, results1, y1, model
torch.cuda.empty_cache()
'''
draw_graphs ------ Draws all the graphs for the given input, for discrete formulation
Parameters ---- y ------------ Input, which is the array of points
model -------- Network on GPU. Can be CINNs or simple fully connected network.
graph_path --- Folder location where to draw all graphs.
func_f ------- Function f, which is only used in the continuous formulation
func_g ------- Function g, which is the unit gaussian in our formulation
norm_const --- In case you want to scale function g.
period_Boundary_Flag ------- Periodic boundary flag
'''
def draw_graphs_2(y, model, graph_path, func_f, func_g, norm_const, period_Boundary_Flag):
y1 = y.detach().cpu().numpy()
hx = y1[:, 1].reshape(500, 500)
hy = y1[:, 0].reshape(500, 500)
hx1 = hx[0:-1:10, 0:-1:10]
hy1 = hy[0:-1:10, 0:-1:10]
plt.figure()
plt.plot(hx1, hy1)
plt.plot(np.transpose(hx1), np.transpose(hy1))
plt.savefig(graph_path + 'testing_data.png')
plt.close()
g = func_g(y, norm_const).cpu().numpy()
im = g.reshape(500, 500)
plt.figure()
plt.imshow(im, origin='lower')
plt.colorbar()
plt.axis('off')
plt.savefig(graph_path + 'g.png')
plt.close()
y = y.detach().requires_grad_()
results = model(y)
results1 = results.detach().cpu().numpy()
im = results1.reshape(500, 500)
plt.figure()
plt.imshow(im, origin='lower')
plt.colorbar()
plt.savefig(graph_path + 'u.png')
plt.close()
dy, = grad(results.sum(), y, create_graph=True, retain_graph=True)
du_x, du_y = dy[:, 1], dy[:, 0]
du_x = du_x.detach().cpu().numpy()
du_y = du_y.detach().cpu().numpy()
du_x = du_x.reshape(500, 500)
du_y = du_y.reshape(500, 500)
du_x = du_x + hx
du_y = du_y + hy
grad_x = du_x[0:-1:10, 0:-1:10]
grad_y = du_y[0:-1:10, 0:-1:10]
plt.figure()
plt.plot(grad_x, grad_y)
plt.plot(np.transpose(grad_x), np.transpose(grad_y))
plt.ylim(0, 250)
plt.xlim(0, 250)
plt.savefig(graph_path + 'deformation.png')
plt.close()
# plt.figure()
# plt.quiver(grad_x, grad_y)
# plt.savefig(graph_path + 'quiver.png')
# plt.close()
del results, dy, du_x, du_y, g, grad_x, grad_y, hx, hx1, hy, hy1, y1
torch.cuda.empty_cache()
g_jac_det = run_in_batches(y, func_g, 5, period_Boundary_Flag, norm_const, False, model)
g_jac_det = g_jac_det.reshape(500, 500)
plt.figure()
plt.imshow(g_jac_det, origin='lower')
plt.colorbar()
plt.axis('off')
plt.savefig(graph_path + 'g_jac_det.png')
plt.close()