-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPermutation_Sequence.cpp
51 lines (42 loc) · 1.29 KB
/
Permutation_Sequence.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
/*
Permutation Sequence
The set [1,2,3,¡,n] contains a total of n! unique permutations.
By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):
"123"
"132"
"213"
"231"
"312"
"321"
Given n and k, return the kth permutation sequence.
Note: Given n will be between 1 and 9 inclusive.
*/
class Solution {
public:
string getPermutation(int n, int k) {
int p[n]; // p[i] represents the number of permutation(i).
p[0] = 0; p[1] = 1;
for (int i=2; i<n; i++) p[i] = p[i-1] * i;
bool isUsed[n]; // isUsed[i] represents whether i+1 appears before.
for (int i=0; i<n; i++) isUsed[i] = false;
k--;
string permutation = "";
int rank;
for (int i=n-1; i>=0; i--) {
// Find the rank of ith element from the left.
if (i>0) rank = k / p[i];
else rank = k;
// Find the rank-th element in no-show ascending elements.
int element = -1, cnt = 0;
while (cnt <= rank) {
element++;
if (!isUsed[element]) cnt++;
}
isUsed[element] = true;
permutation += (char)(element+1+'0');
k -= rank * p[i];
}
return permutation;
}
};