forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpubtab_dataset.py
138 lines (120 loc) · 5.02 KB
/
pubtab_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import os
import random
from paddle.io import Dataset
import json
from copy import deepcopy
from .imaug import transform, create_operators
class PubTabDataSet(Dataset):
def __init__(self, config, mode, logger, seed=None):
super(PubTabDataSet, self).__init__()
self.logger = logger
global_config = config["Global"]
dataset_config = config[mode]["dataset"]
loader_config = config[mode]["loader"]
label_file_list = dataset_config.pop("label_file_list")
data_source_num = len(label_file_list)
ratio_list = dataset_config.get("ratio_list", [1.0])
if isinstance(ratio_list, (float, int)):
ratio_list = [float(ratio_list)] * int(data_source_num)
assert (
len(ratio_list) == data_source_num
), "The length of ratio_list should be the same as the file_list."
self.data_dir = dataset_config["data_dir"]
self.do_shuffle = loader_config["shuffle"]
self.seed = seed
self.mode = mode.lower()
logger.info("Initialize indexs of datasets:%s" % label_file_list)
self.data_lines = self.get_image_info_list(label_file_list, ratio_list)
# self.check(config['Global']['max_text_length'])
if mode.lower() == "train" and self.do_shuffle:
self.shuffle_data_random()
self.ops = create_operators(dataset_config["transforms"], global_config)
self.need_reset = True in [x < 1 for x in ratio_list]
def get_image_info_list(self, file_list, ratio_list):
if isinstance(file_list, str):
file_list = [file_list]
data_lines = []
for idx, file in enumerate(file_list):
with open(file, "rb") as f:
lines = f.readlines()
if self.mode == "train" or ratio_list[idx] < 1.0:
random.seed(self.seed)
lines = random.sample(lines, round(len(lines) * ratio_list[idx]))
data_lines.extend(lines)
return data_lines
def check(self, max_text_length):
data_lines = []
for line in self.data_lines:
data_line = line.decode("utf-8").strip("\n")
info = json.loads(data_line)
file_name = info["filename"]
cells = info["html"]["cells"].copy()
structure = info["html"]["structure"]["tokens"].copy()
img_path = os.path.join(self.data_dir, file_name)
if not os.path.exists(img_path):
self.logger.warning("{} does not exist!".format(img_path))
continue
if len(structure) == 0 or len(structure) > max_text_length:
continue
# data = {'img_path': img_path, 'cells': cells, 'structure':structure,'file_name':file_name}
data_lines.append(line)
self.data_lines = data_lines
def shuffle_data_random(self):
if self.do_shuffle:
random.seed(self.seed)
random.shuffle(self.data_lines)
return
def __getitem__(self, idx):
try:
data_line = self.data_lines[idx]
data_line = data_line.decode("utf-8").strip("\n")
info = json.loads(data_line)
file_name = info["filename"]
cells = info["html"]["cells"].copy()
structure = info["html"]["structure"]["tokens"].copy()
img_path = os.path.join(self.data_dir, file_name)
if not os.path.exists(img_path):
raise Exception("{} does not exist!".format(img_path))
data = {
"img_path": img_path,
"cells": cells,
"structure": structure,
"file_name": file_name,
}
with open(data["img_path"], "rb") as f:
img = f.read()
data["image"] = img
outs = transform(data, self.ops)
except:
import traceback
err = traceback.format_exc()
self.logger.error(
"When parsing line {}, error happened with msg: {}".format(
data_line, err
)
)
outs = None
if outs is None:
rnd_idx = (
np.random.randint(self.__len__())
if self.mode == "train"
else (idx + 1) % self.__len__()
)
return self.__getitem__(rnd_idx)
return outs
def __len__(self):
return len(self.data_lines)