-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path16.cpp
54 lines (47 loc) · 1.75 KB
/
16.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
// 16. 3Sum Closest - https://leetcode.com/problems/3sum-closest
#include "bits/stdc++.h"
using namespace std;
const int INF = (int)1e9;
class Solution {
public:
int threeSumClosest(vector<int> &nums, int target) {
sort(nums.begin(), nums.end());
int n = (int)nums.size();
if (n <= 3) { return accumulate(nums.begin(), nums.end(), 0); }
int cur_sum = accumulate(nums.begin(), nums.begin() + 3, 0);
/* v[0] v[1] v[2] ... v[i] .... v[M] ... v[k] ... v[n-2] v[n-1]
* v[i] <= v[M] <= v[k] because we sorted our array.
* Now, for each number, v[M] : we look for pairs v[L] & v[R] such that
* absolute value of (target - (v[M] + v[L] + v[R]) is minimised.
* if the sum of the triplet is greater then the target it implies
* we need to reduce our sum, so we do --R, that is we reduce
* our sum by taking a smaller number.
* Simillarly if sum of the triplet is less then the target then we
* increase out sum by taking a larger number, i.e. ++L.
*/
int result = INF;
for (int M = 1; M < n - 1; ++M) {
cur_sum = INF;
int L = 0;
int R = n - 1;
while (L < M && M < R) {
cur_sum = nums[L] + nums[M] + nums[R];
if (target > cur_sum) {
++L;
} else if (target == cur_sum) {
return target;
} else {
--R;
}
if (abs(result - target) > (abs(cur_sum - target))) {
result = cur_sum;
}
}
}
return result;
}
};
int main() {
ios::sync_with_stdio(false);
return 0;
}