-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_data_load.py
244 lines (187 loc) · 7.74 KB
/
utils_data_load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import torch
import numpy as np
import pandas as pd
import os
from torch.utils.data import DataLoader
from sklearn.preprocessing import (
StandardScaler,
MinMaxScaler,
LabelEncoder,
) # , OneHotEncoder
import pickle
from pprint import pprint
print(os.getcwd())
# os.chdir('./Users/bredsoby')
# Load data with 78
# The data with 78 features takes very long to train on Colab an locally
#load_78_features = True
# Load data with 23 features
load_78_features = False
# loads the whole datasets ,the code will run slowly
def _load_datasets(load_78_features=True, n_rows=None):
# Load 78 features
if load_78_features is True:
# read 500 rows for testing
X_train__78_features = pd.read_csv(
"datasets/X_train_78_features_sampled.csv", nrows=n_rows
)
if (
len(X_train__78_features.columns) == 79
): # Check the files loaded because extra columns gets added
X_train__78_features = X_train__78_features.drop(columns="Unnamed: 0")
print("X_train__78_features", X_train__78_features.shape)
X_test__78_features = pd.read_csv(
"datasets/X_test_78_features.csv", nrows=n_rows
)
if len(X_test__78_features.columns) == 79:
X_test__78_features = X_test__78_features.drop(columns="Unnamed: 0")
print("X_test__78_features", X_test__78_features.shape)
# max_rows=500,
Y_train_binary__78_features = np.loadtxt(
"datasets/y_train_binary_78_features_sampled.csv",
max_rows=n_rows,
delimiter=",",
)
print("Y_train_binary__78_features", Y_train_binary__78_features.shape)
print(pd.DataFrame(Y_train_binary__78_features).value_counts())
Y_test__binary = np.loadtxt(
"datasets/y_test_binary.csv", max_rows=n_rows, delimiter=","
)
print("Y_test_binary", Y_test__binary.shape)
return (
X_train__78_features,
X_test__78_features,
Y_train_binary__78_features,
Y_test__binary,
)
# Load 23 features
if load_78_features is False:
X_train__23_features = pd.read_csv(
"datasets/X_train_23_features_sampled.csv", nrows=n_rows
)
if len(X_train__23_features.columns) == 24:
X_train__23_features = X_train__23_features.drop(columns="Unnamed: 0")
print("X_train__23_features", X_train__23_features.shape)
X_test__23_features = pd.read_csv(
"datasets/X_test_23_features.csv", nrows=n_rows
)
if len(X_test__23_features.columns) == 24:
X_test__23_features = X_test__23_features.drop(columns="Unnamed: 0")
print("X_test__23_features", X_test__23_features.shape)
Y_train_binary__23_features = np.loadtxt(
"datasets/y_train_binary_23_features_sampled.csv",
max_rows=n_rows,
delimiter=",",
)
print("y_train_binary__23_features", Y_train_binary__23_features.shape)
pprint(pd.DataFrame(Y_train_binary__23_features).value_counts())
Y_test__binary = np.loadtxt(
"datasets/y_test_binary.csv", max_rows=n_rows, delimiter=","
)
print("Y_test__binary", Y_test__binary.shape)
return (
X_train__23_features,
X_test__23_features,
Y_train_binary__23_features,
Y_test__binary,
)
def load_datasets(load_for_testing=False, n_rows=None):
if load_for_testing:
X_train, X_test, Y_train, Y_test = _load_datasets(
load_78_features=load_78_features, n_rows=n_rows
)
# when Y datasets are loaded in small amount we get zeros because zeros are majority
# print('is zero: ', np.all((Y_train == 0)))
# to get around this we generate some Y data
Y_train = np.random.randint(0, 15, size=n_rows)
Y_test = np.random.randint(0, 15, size=n_rows)
le = LabelEncoder() # Encode target labels with value between 0 and n_classes-1
Y_train_binary = le.fit_transform(Y_train)
Y_test_binary = le.transform(Y_test)
labels_dict = dict(zip(le.classes_, range(len(le.classes_))))
return X_train, X_test, Y_train_binary, Y_test_binary, labels_dict
else:
X_train, X_test, Y_train, Y_test = _load_datasets(
load_78_features=load_78_features, n_rows=None
)
labels_dict = pickle.load(open("datasets/labels_dict_file.pkl", "rb"))
return X_train, X_test, Y_train, Y_test, labels_dict
# load_for_testing: load a small part of the dataset for testing,debuging the code
X_train, X_test, Y_train, Y_test, labels_dict = load_datasets(load_for_testing=True, n_rows=1500)
# load the whole datasets available
#X_train, X_test, Y_train, Y_test, labels_dict = load_datasets()
# scaler = StandardScaler()
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test.to_numpy())
class SecurityDataset(torch.utils.data.Dataset):
def __init__(
self, X_train, y_train, transform=torch.tensor, target_transform=torch.tensor
):
self.X_train = torch.tensor(X_train, dtype=torch.float32)
self.Y_train = torch.tensor(y_train)
self.transform = transform
self.target_transform = target_transform
if self.transform:
self.X_train = self.transform(X_train, dtype=torch.float32)
if self.target_transform:
self.Y_train = self.target_transform(y_train, dtype=torch.int64)
def __len__(self):
return len(self.Y_train)
def __getitem__(self, index):
feature = torch.index_select(self.X_train, 0, torch.tensor([index]))
label = torch.index_select(self.Y_train, 0, torch.tensor([index]))
return feature, label
train_dataset = SecurityDataset(X_train, Y_train)
test_dataset = SecurityDataset(X_test, Y_test)
from sklearn.utils import class_weight
classes_y = np.array(list(labels_dict.values()))
print("classes_y: ", classes_y)
# calculate the class weights
class_weights = class_weight.compute_class_weight(
class_weight="balanced", classes=classes_y, y=Y_train # np.unique(y_train_binary),
)
print("class_weights: ", class_weights)
print()
# class_weights.round(decimals=3, out=None)
class_weights = np.around(class_weights, decimals=3)
classes_class_weights = dict(zip(classes_y, class_weights))
print("classes_class_weights: ")
pprint(classes_class_weights)
weights_sampler = 1.0 / class_weights
sample_weights = [0] * len(train_dataset)
# weights_sampler =np.around(weights_sampler, decimals=5)
for idx, (data, label) in enumerate(train_dataset):
class_weight = class_weights[int(label.item())]
sample_weights[idx] = class_weight
sampler = torch.utils.data.WeightedRandomSampler(
sample_weights, num_samples=len(sample_weights), replacement=True
)
batch_size = 32
# use num_workers declared when the code is run on the cloud and it runs faster
'''train_loader = DataLoader(
dataset=train_dataset,
batch_size=batch_size,
sampler=sampler,
drop_last=True,
num_workers=os.cpu_count(),
pin_memory=True
)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=batch_size,
shuffle=True,
drop_last=True,
num_workers=os.cpu_count(),
pin_memory=True
)
'''
# use without num_workers declared when the code is run loccaly(on laptop) because it gives errors
train_loader = DataLoader( dataset=train_dataset, batch_size=batch_size, sampler=sampler, drop_last=True, pin_memory=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True, drop_last=True, pin_memory=True)
def get_input_size():
return X_train.shape[1]
def get_number_of_classes():
return len(labels_dict)
def get_dataloaders():
return train_loader, test_loader