-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmnist_skflow.py
41 lines (36 loc) · 1.81 KB
/
mnist_skflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import tensorflow.contrib.learn as skflow
from tensorflow.examples.tutorials.mnist import input_data
from sklearn import datasets, metrics
# Loading MNIST data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
def max_pool_2x2(tensor_in):
return tf.nn.max_pool(tensor_in, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
padding='SAME')
def conv_model(X, y):
# reshape X to 4d tensor with 2nd and 3rd dimensions being image width and height
# final dimension being the number of color channels
X = tf.reshape(X, [-1, 28, 28, 1])
# first conv layer will compute 32 features for each 5x5 patch
with tf.variable_scope('conv_layer1'):
h_conv1 = skflow.ops.conv2d(X, n_filters=32, filter_shape=[5, 5],
bias=True, activation=tf.nn.relu)
h_pool1 = max_pool_2x2(h_conv1)
# second conv layer will compute 64 features for each 5x5 patch
with tf.variable_scope('conv_layer2'):
h_conv2 = skflow.ops.conv2d(h_pool1, n_filters=64, filter_shape=[5, 5],
bias=True, activation=tf.nn.relu)
h_pool2 = max_pool_2x2(h_conv2)
# reshape tensor into a batch of vectors
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
# densely connected layer with 1024 neurons
h_fc1 = skflow.ops.dnn(h_pool2_flat, [1024], activation=tf.nn.relu, keep_prob=0.5)
return skflow.models.logistic_regression(h_fc1, y)
sess = tf.Session()
builder = tf.saved_model.builder.SavedModelBuilder("./model_sklearn")
sess.run(tf.global_variables_initializer())
# Training and predicting
classifier = skflow.TensorFlowEstimator(
model_fn=conv_model, n_classes=10, batch_size=100, steps=20000,
learning_rate=0.001)
builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING])
builder.save(True)