forked from EEA-sensors/ekfukf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathut_transform.m
152 lines (141 loc) · 3.43 KB
/
ut_transform.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
%UT_TRANSFORM Perform unscented transform
%
% Syntax:
% [mu,S,C,X,Y,w] = UT_TRANSFORM(M,P,g,g_param,tr_param)
%
% In:
% M - Random variable mean (Nx1 column vector)
% P - Random variable covariance (NxN pos.def. matrix)
% g - Transformation function of the form g(x,param) as
% matrix, inline function, function name or function reference
% g_param - Parameters of g (optional, default empty)
% tr_param - Parameters of the transformation as:
% alpha = tr_param{1} - Transformation parameter (optional)
% beta = tr_param{2} - Transformation parameter (optional)
% kappa = tr_param{3} - Transformation parameter (optional)
% mat = tr_param{4} - If 1 uses matrix form (optional, default 0)
% X = tr_param{5} - Sigma points of x
% w = tr_param{6} - Weights as cell array {mean-weights,cov-weights,c}
%
% Out:
% mu - Estimated mean of y
% S - Estimated covariance of y
% C - Estimated cross-covariance of x and y
% X - Sigma points of x
% Y - Sigma points of y
% w - Weights as cell array {mean-weights,cov-weights,c}
%
% Description:
% ...
% For default values of parameters, see UT_WEIGHTS.
%
% See also
% UT_WEIGHTS UT_MWEIGHTS UT_SIGMAS
% Copyright (C) 2006 Simo S�rkk�
% 2010 Jouni Hartikainen
%
% $Id$
%
% This software is distributed under the GNU General Public
% Licence (version 2 or later); please refer to the file
% Licence.txt, included with the software, for details.
function [mu,S,C,X,Y,w] = ut_transform(M,P,g,g_param,tr_param)
if nargin < 4
g_param = [];
end
if nargin < 5
tr_param = [];
end
%
% Apply defaults
%
if isempty(tr_param)
alpha = [];
beta = [];
kappa = [];
mat = [];
X = [];
w = [];
else
alpha = tr_param{1};
if length(tr_param) >= 2
beta = tr_param{2};
else
beta = [];
end
if length(tr_param) >= 3
kappa = tr_param{3};
else
kappa = [];
end
if length(tr_param) >= 4
mat = tr_param{4};
else
mat = [];
end
if length(tr_param) >= 5
X = tr_param{5};
else
X = [];
end
if length(tr_param) >= 6
w = tr_param{6};
else
w = [];
end
end
if isempty(mat)
mat = 0;
end
%
% Calculate sigma points
%
if isempty(w) == 0
WM = w{1};
c = w{3};
if mat
W = w{2};
else
WC = w{2};
end
elseif mat
[WM,W,c] = ut_mweights(size(M,1),alpha,beta,kappa);
X = ut_sigmas(M,P,c);
w = {WM,W,c};
else
[WM,WC,c] = ut_weights(size(M,1),alpha,beta,kappa);
X = ut_sigmas(M,P,c);
w = {WM,WC,c};
end
%
% Propagate through the function
%
if isnumeric(g)
Y = g*X;
elseif ischar(g) | strcmp(class(g),'function_handle')
Y = [];
for i=1:size(X,2)
Y = [Y feval(g,X(:,i),g_param)];
end
else
Y = [];
for i=1:size(X,2)
Y = [Y g(X(:,i),g_param)];
end
end
if mat
mu = Y*WM;
S = Y*W*Y';
C = X*W*Y';
else
mu = zeros(size(Y,1),1);
S = zeros(size(Y,1),size(Y,1));
C = zeros(size(M,1),size(Y,1));
for i=1:size(X,2)
mu = mu + WM(i) * Y(:,i);
end
for i=1:size(X,2)
S = S + WC(i) * (Y(:,i) - mu) * (Y(:,i) - mu)';
C = C + WC(i) * (X(1:size(M,1),i) - M) * (Y(:,i) - mu)';
end
end