-
Notifications
You must be signed in to change notification settings - Fork 77
/
Copy pathsuffix_lcp.cpp
171 lines (144 loc) · 5.41 KB
/
suffix_lcp.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/*
Suffix array O(n lg^2 n)
LCP table O(n)
Explanation on how suffix array works: http://stackoverflow.com/a/17763563/1162233
*/
#define Max 1000
string S;
int N, gap;
int sa[Max]; // suffix array
// rank-lookup table(contains the lexicographic names)
// pos[k] contains the lexicographic name of the k-th m-gram of the previous step
int pos[Max];
// tmp[] is an auxiliary array used to help create pos[]
int tmp[Max];
int lcp[Max];
bool sufCmp(int i, int j) {
if (pos[i] != pos[j])
return pos[i] < pos[j];
i += gap;
j += gap;
return (i < N and j < N) ? pos[i] < pos[j] : i > j;
}
void buildSA() {
N = S.length();
/* This is a loop that initializes sa[] and pos[].
For sa[] we assume the order the suffixes have
in the given string. For pos[] we set the lexicographic
rank of each 1-gram using the characters themselves.
That makes sense, right? */
rep(i, N) sa[i] = i, pos[i] = S[i];
/* Gap is the length of the m-gram in each step, divided by 2.
We start with 2-grams, so gap is 1 initially. It then increases
to 2, 4, 8 and so on. */
for (gap = 1;; gap *= 2) {
/* We sort by (gap*2)-grams: */
sort(sa, sa + N, sufCmp);
/* We compute the lexicographic renaming(rank) of each m-gram
that we have sorted above. Notice how the rank is computed
by comparing each n-gram at position i with its
neighbor at i+1. If they are identical, the comparison
yields 0, so the rank does not increase. Otherwise the
comparison yields 1, so the rank increases by 1. */
rep(i, N - 1) tmp[i + 1] = tmp[i] + sufCmp(sa[i], sa[i + 1]);
/* tmp contains the rank by position. Now we map this
into pos, so that in the next step we can look it
up per m-gram, rather than by position. */
rep(i, N) pos[sa[i]] = tmp[i];
/* If the largest lexicographic name generated is
n-1, we are finished, because this means all
m-grams must have been different. */
if (tmp[N - 1] == N - 1) break;
}
}
void buildLCP() {
for (int i = 0, k = 0; i < N; ++i)
if (pos[i] != N - 1) {
for (int j = sa[pos[i] + 1]; S[i + k] == S[j + k];) ++k;
lcp[pos[i]] = k;
if(k) --k;
}
}
/*
Suffix Array O(nlogn)
Source: Competitive Programming by Felix Halim
*/
#define MAX 10050
int RA[MAX], tempRA[MAX]; // rank array and temporary rank array
int SA[MAX], tempSA[MAX]; // suffix array and temporary suffix array
int C[MAX]; // for counting/radix sort
// Ph[i] stores the suffix index of the previous suffix of suffix SA[i] in suffix array order
// PLCP - permuted longest common prefix
int Phi[MAX], PLCP[MAX], LCP[MAX];
void suffix_sort(int n, int k) {
mem(C, 0); // clear frequency table
for (int i = 0; i < n; i++) // count the frequency of each rank
C[i + k < n ? RA[i + k] : 0]++;
int sum = 0, N = max(256, n); // upto 255 ASCII chars or length of n
for (int i = 0; i < N; i++) {
int t = C[i];
C[i] = sum;
sum += t;
}
for (int i = 0; i < n; i++) // shuffle the suffix array if necessary
tempSA[C[SA[i] + k < n ? RA[SA[i] + k] : 0]++] = SA[i];
memcpy(SA, tempSA, n*sizeof(int)); // update the suffix array
}
void suffix_array(string &s) {
int n = s.size();
// initial rankings
for (int i = 0; i < n; i++)
RA[i] = s[i] - '$';
// initial SA {0, 1, 2, ...... n - 1}
for (int i = 0; i < n; i++)
SA[i] = i;
// repeat sorting process log n times
for (int k = 1; k < n; k *= 2) {
suffix_sort(n, k); // radix sort. sort based on the second item
suffix_sort(n, 0); // then stable sort.
int r = tempRA[SA[0]] = 0; // re-ranking. start from rank r = 0
for (int i = 1; i < n; i++) { // compare adjacent suffixes
// if same pair, then same rank r; otherwise increase r
int s1 = SA[i], s2 = SA[i - 1];
bool equal = true;
equal &= RA[s1] == RA[s2];
equal &= RA[s1 + k] == RA[s2 + k];
tempRA[SA[i]] = equal ? r : ++r;
}
memcpy(RA, tempRA, n * sizeof tempRA[0]); // update the rank array RA
}
}
void Lcp(string &s) {
int n = s.size();
Phi[SA[0]] = -1; // default value i.e. there is no previous suffix that preceed suffix SA[0]
for (int i = 1; i < n; i++) // compute Phi in O(n)
Phi[SA[i]] = SA[i - 1]; // remember which suffix is behind this suffix
for (int i = 0, L = 0; i < n; i++) { // compute permutated LCP in O(n)
if (Phi[i] == -1) { // special case
PLCP[i] = 0;
continue;
}
// L will be increased max n times
while (s[i + L] == s[Phi[i] + L])
L++;
PLCP[i] = L;
// At least (L - 1) characters can match as the next suffix in position order will have one less starting
// character than the current suffix. L will be decreased max n times
L = max(L - 1, 0);
}
for (int i = 1; i < n; i++) // compute LCP in O(n)
LCP[i] = PLCP[SA[i]]; // put the permutate LCP back to the correct position
}
int main(void) {
cin >> S;
S += '$';
pf("O(n logn^2)\n");
buildSA();
buildLCP();
rep(i, N - 1) print(sa[i]), println(lcp[i]);
pf("O(nlogn)\n");
suffix_array(S);
Lcp(S);
rep(i, N - 1) print(SA[i]), println(LCP[i + 1]);
return 0;
}