-
Notifications
You must be signed in to change notification settings - Fork 77
/
Copy pathHLD.cpp
173 lines (151 loc) · 5.39 KB
/
HLD.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/*
problem ID: QTREE (spoj)
source: Anudeep's blog on HLD
Time Complexity: O(log^2 n)
*/
#define root 0
#define N 10100
#define LogN 14 // log(N)
#define segTreeSize 32768 // 2 * pow(2.0, floor(log((double) N ) / log(2.0)) + 1
vector <int> adj[N], costs[N], indexx[N];
int baseArray[N], ptr;
int chainNo, chainInd[N], chainHead[N], posInBase[N];
int depth[N], table[N][LogN], otherEnd[N], subTreeSize[N];
int segment_tree[segTreeSize];
// See Segment Tree for Implementation
void buildSegTree(int node = 1, int start = 0, int end = ptr - 1);
void update(int node, int start, int end, int index, int value );
int querySegTree(int node, int start, int end, int i, int j);
/*
* query_up:
* It takes two nodes u and v, condition is that v is an ancestor of u
* We query the chain in which u is present till chain head, then move to next chain up
* We do that way till u and v are in the same chain, we query for that part of chain and break
*/
int query_up(int u, int v) {
if(u == v) return 0; // Trivial
int uchain, vchain = chainInd[v], ans = -1, ret;
// uchain and vchain are chain numbers of u and v
while(true) {
uchain = chainInd[u];
if(uchain == vchain) {
// Both u and v are in the same chain, so we need to query from u to v, update answer and break.
// We break because we came from u up till v, we are done
if(u == v) break;
ret = querySegTree(1, 0, ptr - 1, posInBase[v] + 1, posInBase[u]);
// Above is call to segment tree query function
ans = max(ans, ret); // Update answer
break;
}
ret = querySegTree(1, 0, ptr - 1, posInBase[chainHead[uchain]], posInBase[u]);
// Above is call to segment tree query function. We do from chainHead of u till u. That is the whole chain from
// start till head. We then update the answer
ans = max(ans, ret);
u = chainHead[uchain]; // move u to u's chainHead
u = table[u][0]; //Then move to its parent, that means we changed chains
}
return ans;
}
// See LCA section
int lcaQuery(int u, int v);
void lcaInit(int n);
void query(int u, int v) {
int lca = lcaQuery(u, v);
int ans = max(query_up(v, lca), query_up(u, lca));
printf("%d\n", ans);
}
void change(int i, int val) {
int u = otherEnd[i];
update(1, 0, ptr - 1, posInBase[u], val);
}
void HLD(int curNode = root, int cost = -1, int prev = -1) {
if(chainHead[chainNo] == -1) { // Given a chain, what is the head of the chain
chainHead[chainNo] = curNode; // Assign chain head
}
chainInd[curNode] = chainNo; // Given a node, to which chain does that node belong to
//chainPos[cur] = chainSize[chainNo]; // Given a node, what is the position of that node in its chain
//chainSize[chainNo]++; // Given a chain, what is the length of the chain
posInBase[curNode] = ptr; // Position of this node in baseArray which we will use in Segtree
baseArray[ptr++] = cost;
int sc = -1, ncost;
// Loop to find special child
for(int i = 0, n = (int)adj[curNode].size(); i < n; i++) {
int v = adj[curNode][i];
if(v != prev) {
if(sc == -1 or subTreeSize[sc] < subTreeSize[v]) {
sc = v, ncost = costs[curNode][i];
}
}
}
if(sc != -1) { // Incase of curNode is leaf node
// Expand the chain
HLD(sc, ncost, curNode);
}
for(int i = 0, n = (int)adj[curNode].size(); i < n; i++) {
int v = adj[curNode][i];
if(v != prev and v != sc) {
// New chains at each normal node
chainNo++;
HLD(v, costs[curNode][i], curNode);
}
}
}
void dfs(int cur = root, int prev = -1, int _depth = 0) {
table[cur][0] = prev;
depth[cur] = _depth;
subTreeSize[cur] = 1;
for(int i = 0, n = (int)adj[cur].size(); i < n; i++) {
int v = adj[cur][i];
if(v != prev) {
otherEnd[indexx[cur][i]] = v;
dfs(v, cur, _depth + 1);
subTreeSize[cur] += subTreeSize[v];
}
}
}
int main(void) {
int tcase;
scanf("%d", &tcase);
while(tcase--) {
ptr = 0;
int n;
scanf("%d", &n);
// Cleaning step, new test case
for(int i = 0; i < n; i++) {
adj[i].clear();
costs[i].clear();
indexx[i].clear();
chainHead[i] = -1;
for(int j = 0; i < LogN; i++) table[i][j] = -1;
}
for(int i = 0; i < n - 1; i++) {
int u, v, cost;
scanf("%d %d %d", &u, &v, &cost);
u--, v--;
adj[u].push_back(v);
costs[u].push_back(cost);
indexx[u].push_back(i);
adj[v].push_back(u);
costs[v].push_back(cost);
indexx[v].push_back(i);
}
chainNo = 0;
dfs(); // We set up subTreeSize, depth and parent for each node
HLD(); // We decomposed the tree and created baseArray
buildSegTree(); // We use baseArray and construct the needed segment tree
lcaInit(n);
while(true) {
char s[100];
scanf("%s", s);
if(s[0] == 'D') break;
int a, b;
scanf("%d %d", &a, &b);
if(s[0] == 'Q') {
query(a - 1, b - 1);
} else {
change(a - 1, b);
}
}
}
return 0;
}