-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain_RGB.py
322 lines (278 loc) · 16.7 KB
/
train_RGB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
##########################################
# Train with RGB exclusively
# RGBD and Depth exclusively are also supported
# Last update on Oct.18, 2018, Jin Zeng
##########################################
import sys, os
import torch
import argparse
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.models as models
import sklearn.preprocessing as sk
from os.path import join as pjoin
from tensorboardX import SummaryWriter
from torch.autograd import Variable
from torch.utils import data
from tqdm import tqdm
from models import get_model, get_lossfun
from loader import get_data_path, get_loader
from pre_trained import get_premodel
from models.loss import cross_cosine
from utils import norm_tf, load_resume_state_dict
# from sync_batchnorm import DataParallelWithCallback
def train(args):
writer = SummaryWriter(comment=args.writer)
# data loader setting, train and evaluation
data_loader = get_loader(args.dataset)
data_path = get_data_path(args.dataset)
t_loader = data_loader(data_path, split='train', img_size=(args.img_rows, args.img_cols), img_norm=args.img_norm)
v_loader = data_loader(data_path, split='test', img_size=(args.img_rows, args.img_cols), img_norm=args.img_norm)
trainloader = data.DataLoader(t_loader, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)
evalloader = data.DataLoader(v_loader, batch_size=args.batch_size, num_workers=args.num_workers)
print("Finish Loader Setup")
# Setup Model and load pretrained model
model_name = args.arch_RGB
# print(model_name)
model = get_model(model_name, True) # vgg_16
if args.pretrain: # True by default
if args.input == 'rgb': # only for rgb we have pretrain option
state = get_premodel(model, args.state_name)
model.load_state_dict(state)
model = torch.nn.DataParallel(model, device_ids=range(torch.cuda.device_count()))
elif args.input == 'd': # for d, load from result from...
print("Load training model: {}_{}_{}_{}_best.pkl".format(args.arch_RGB, args.dataset, args.loss, 1))
checkpoint = torch.load(pjoin(args.model_savepath_pretrain,
"{}_{}_{}_{}_best.pkl".format(args.arch_RGB, args.dataset, args.loss, 1)))
# model.load_state_dict(load_resume_state_dict(model, checkpoint['model_D_state']))
model = torch.nn.DataParallel(model, device_ids=range(torch.cuda.device_count()))
model.load_state_dict(checkpoint['model_D_state'])
else:
model = torch.nn.DataParallel(model, device_ids=range(torch.cuda.device_count()))
# model = torch.nn.DataParallel(model, device_ids=range(torch.cuda.device_count()))
# model_RGB = DataParallelWithCallback(model_RGB, device_ids=range(torch.cuda.device_count()))
model.cuda()
print("Finish model setup with model %s and state_dict %s" % (args.arch_RGB, args.state_name))
# optimizers and lr-decay setting
if args.pretrain: # True by default
optimizer_RGB = torch.optim.RMSprop(model.parameters(), lr=0.25 * args.l_rate)
scheduler_RGB = torch.optim.lr_scheduler.MultiStepLR(optimizer_RGB, milestones=[1, 2, 4, 8], gamma=0.5)
else:
optimizer_RGB = torch.optim.RMSprop(model.parameters(), lr=args.l_rate)
scheduler_RGB = torch.optim.lr_scheduler.MultiStepLR(optimizer_RGB, milestones=[1, 3, 5, 8, 11, 15], gamma=0.5)
# forward and backward
best_loss = 3
n_iter_t, n_iter_v = 0, 0
if args.dataset == 'matterport':
total_iter_t = 105432 / args.batch_size
elif args.dataset == 'scannet':
total_iter_t = 59743 / args.batch_size
else:
total_iter_t = 0
if not os.path.exists(args.model_savepath):
os.makedirs(args.model_savepath)
for epoch in range(args.n_epoch):
scheduler_RGB.step()
model.train()
for i, (images, labels, masks, valids, depthes, meshdepthes) in enumerate(trainloader):
n_iter_t += 1
images = Variable(images.contiguous().cuda())
labels = Variable(labels.contiguous().cuda())
masks = Variable(masks.contiguous().cuda())
optimizer_RGB.zero_grad()
if args.input == 'rgb':
outputs = model(images)
else:
depthes = Variable(depthes.contiguous().cuda())
if args.input == 'rgbd':
rgbd_input = torch.cat((images, depthes), dim=1)
outputs = model(rgbd_input)
elif args.input == 'd':
outputs = model(depthes)
loss, df = get_lossfun(args.loss, outputs, labels, masks)
if args.l1regular:
loss_rgl, df_rgl = get_lossfun('l1gra', outputs, labels, masks)
elif args.gradloss:
loss_grad, df_grad = get_lossfun('gradmap', outputs, labels, masks)
if args.l1regular:
outputs.backward(gradient=df, retain_graph=True)
outputs.backward(gradient=0.1 * df_rgl)
elif args.gradloss:
outputs.backward(gradient=df, retain_graph=True)
outputs.backward(gradient=0.5 * df_grad)
else:
outputs.backward(gradient=df)
optimizer_RGB.step()
if (i + 1) % 100 == 0:
if args.l1regular:
print("Epoch [%d/%d] Iter [%d/%d] Loss and RGL: %.4f, %.4f" % (
epoch + 1, args.n_epoch, i, total_iter_t, loss.data, loss_rgl.data))
elif args.gradloss:
print("Epoch [%d/%d] Iter [%d/%d] Loss and GradLoss: %.4f, %.4f" % (
epoch + 1, args.n_epoch, i, total_iter_t, loss.data, loss_grad.data))
else:
print("Epoch [%d/%d] Iter [%d/%d] Loss: %.4f" % (
epoch + 1, args.n_epoch, i, total_iter_t, loss.data))
if (i + 1) % 250 == 0:
writer.add_scalar('loss/trainloss', loss.data.item(), n_iter_t)
if args.l1regular:
writer.add_scalar('loss/trainloss_rgl', loss_rgl.data.item(), n_iter_t)
elif args.gradloss:
writer.add_scalar('loss/trainloss_grad', loss_grad.data.item(), n_iter_t)
writer.add_images('Image', images + 0.5, n_iter_t)
if args.input != 'rgb':
writer.add_images('Depth', np.repeat(
(depthes - torch.min(depthes)) / (torch.max(depthes) - torch.min(depthes)), 3, axis=1),
n_iter_t)
writer.add_images('Label', 0.5 * (labels.permute(0, 3, 1, 2) + 1), n_iter_t)
outputs_n = norm_tf(outputs)
writer.add_images('Output', outputs_n, n_iter_t)
model.eval()
mean_loss, sum_loss, sum_rgl, sum_grad = 0, 0, 0, 0
evalcount = 0
with torch.no_grad():
for i_val, (images_val, labels_val, masks_val, valids_val, depthes_val, meshdepthes_val) in tqdm(
enumerate(evalloader)):
n_iter_v += 1
images_val = Variable(images_val.contiguous().cuda())
labels_val = Variable(labels_val.contiguous().cuda())
masks_val = Variable(masks_val.contiguous().cuda())
if args.input == 'rgb':
outputs = model(images_val)
else:
depthes_val = Variable(depthes_val.contiguous().cuda())
if args.input == 'rgbd':
rgbd_input = torch.cat((images_val, depthes_val), dim=1)
outputs = model(rgbd_input)
elif args.input == 'd':
outputs = model(depthes_val)
loss, df = get_lossfun(args.loss, outputs, labels_val, masks_val, False) # valid_val not used infact
if args.l1regular:
loss_rgl, df_rgl = get_lossfun('l1gra', outputs, labels_val, masks_val, False)
elif args.gradloss:
loss_grad, df_grad = get_lossfun('gradmap', outputs, labels_val, masks_val, False)
if ((np.isnan(loss)) | (np.isinf(loss))):
sum_loss += 0
else:
sum_loss += loss
evalcount += 1
if args.l1regular:
sum_rgl += loss_rgl
elif args.gradloss:
sum_grad += loss_grad
if (i_val + 1) % 250 == 0:
# print("Epoch [%d/%d] Evaluation Loss: %.4f" % (epoch+1, args.n_epoch, loss))
writer.add_scalar('loss/evalloss', loss, n_iter_v)
writer.add_images('Eval Image', images_val + 0.5, n_iter_t)
if args.input != 'rgb':
writer.add_image('Depth', np.repeat(
(depthes_val - torch.min(depthes_val)) / (torch.max(depthes_val) - torch.min(depthes_val)),
3, axis=1), n_iter_t)
writer.add_images('Eval Label', 0.5 * (labels_val.permute(0, 3, 1, 2) + 1), n_iter_t)
outputs_n = norm_tf(outputs)
writer.add_images('Eval Output', outputs_n, n_iter_t)
mean_loss = sum_loss / evalcount
print("Epoch [%d/%d] Evaluation Mean Loss: %.4f" % (epoch + 1, args.n_epoch, mean_loss))
writer.add_scalar('loss/evalloss_mean', mean_loss, epoch)
writer.add_scalar('loss/evalloss_rgl_mean', sum_rgl / evalcount, epoch)
writer.add_scalar('loss/evalloss_grad_mean', sum_grad / evalcount, epoch)
if mean_loss < best_loss: # if (epoch+1)%20 == 0:
best_loss = mean_loss
state = {'epoch': epoch + 1,
'model_RGB_state': model.state_dict(),
'optimizer_RGB_state': optimizer_RGB.state_dict(), }
if args.pretrain:
if args.l1regular:
torch.save(state, pjoin(args.model_savepath,
"{}_{}_{}_{}_rgls_best.pkl".format(args.arch_RGB, args.dataset, args.loss,
args.model_num)))
elif args.gradloss:
torch.save(state, pjoin(args.model_savepath,
"{}_{}_{}_{}_grad_best.pkl".format(args.arch_RGB, args.dataset, args.loss,
args.model_num)))
else:
torch.save(state, pjoin(args.model_savepath,
"{}_{}_{}_{}_resume_RGB_best.pkl".format(args.arch_RGB, args.dataset,
args.loss, args.model_num)))
else:
torch.save(state, pjoin(args.model_savepath,
"{}_{}_{}_{}_resume_RGB_best.pkl".format(args.arch_RGB, args.dataset, args.loss,
args.model_num)))
print('Finish training for dataset %s trial %s' % (args.dataset, args.model_num))
# state = {'epoch': epoch+1,
# 'model_RGB_state': model_RGB.state_dict(),
# 'optimizer_RGB_state' : optimizer_RGB.state_dict(),}
# if args.pretrain:
# torch.save(state, pjoin(args.model_savepath, "{}_{}_{}_{}_RGB_final.pkl".format(args.arch_RGB, args.dataset, args.loss, args.model_num)))
# elif args.l1regular:
# torch.save(state, pjoin(args.model_savepath, "{}_{}_{}_{}_rgls_final.pkl".format(args.arch_RGB, args.dataset, args.loss, args.model_num)))
# else:
# torch.save(state, pjoin(args.model_savepath, "{}_{}_{}_{}_nopretrain_final.pkl".format(args.arch_RGB, args.dataset, args.loss, args.model_num)))
writer.export_scalars_to_json("./{}_{}_{}_{}.json".format(args.arch_RGB, args.dataset, args.loss, args.model_num))
writer.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Hyperparams')
parser.add_argument('--arch_RGB', nargs='?', type=str, default='vgg_16_in',
help='Architecture for RGB to use [\'vgg_16, ms, vgg_16_in, vgg_16_in_rgbd, unet_3_in etc\']')
parser.add_argument('--arch_D', nargs='?', type=str, default='unet_3',
help='Architecture for Depth to use [\'unet_3, etc\']')
parser.add_argument('--arch_F', nargs='?', type=str, default='fconv',
help='Architecture for Fusion to use [\'fconv etc\']')
parser.add_argument('--dataset', nargs='?', type=str, default='scannet',
help='Dataset to use [\'nyuv2, matterport, scannet, etc\']')
parser.add_argument('--img_rows', nargs='?', type=int, default=240,
help='Height of the input image, 256(yinda), 240(nyu)')
parser.add_argument('--img_cols', nargs='?', type=int, default=320,
help='Width of the input image, 320(yinda and nyu)')
parser.add_argument('--img_norm', dest='img_norm', action='store_true',
help='Enable input image scales normalization [0, 1] | True by default')
parser.add_argument('--no-img_norm', dest='img_norm', action='store_false',
help='Disable input image scales normalization [0, 1] | True by default')
parser.set_defaults(img_norm=True)
parser.add_argument('--n_epoch', nargs='?', type=int, default=10,
help='# of the epochs, max 20')
parser.add_argument('--batch_size', nargs='?', type=int, default=2,
help='Batch Size')
parser.add_argument('--l_rate', nargs='?', type=float, default=1e-3,
help='Learning Rate')
parser.add_argument('--tfboard', dest='tfboard', action='store_true',
help='Enable visualization(s) on tfboard | False by default')
parser.add_argument('--no-tfboard', dest='tfboard', action='store_false',
help='Disable visualization(s) on tfboard | False by default')
parser.set_defaults(tfboard=False)
parser.add_argument('--state_name', nargs='?', type=str, default='vgg_16',
help='Path to the saved state dict, vgg_16, vgg_16_mp, vgg_16_mp_in')
parser.add_argument('--resume', nargs='?', type=str, default=None,
help='Path to previous saved model to restart from')
parser.add_argument('--model_savepath', nargs='?', type=str, default='./checkpoint/instance_norm',
help='Path for model saving [\'checkpoint etc\']')
parser.add_argument('--model_num', nargs='?', type=str, default='1',
help='Checkpoint index [\'1,2,3, etc\']')
parser.add_argument('--loss', nargs='?', type=str, default='l1',
help='Loss type: cosine, sine, l1')
parser.add_argument('--pretrained', dest='pretrain', action='store_true',
help='Load state_dict from pretrained model | True by default')
parser.add_argument('--nopretrained', dest='pretrain', action='store_false',
help='DONOT load state_dict from pretrained model | True by default')
parser.set_defaults(pretrain=False)
parser.add_argument('--l1regular', dest='l1regular', action='store_true',
help='Use l1 norm of gradient as regularization loss | False by default')
parser.add_argument('--nol1regular', dest='l1regular', action='store_false',
help='DONOT Use l1 norm of gradient as regularization loss | False by default')
parser.set_defaults(l1regular=False)
parser.add_argument('--gradloss', dest='gradloss', action='store_true',
help='Extra gradient supervision | False by default')
parser.add_argument('--nogradloss', dest='gradloss', action='store_false',
help='DONOT Use Extra gradient supervision | False by default')
parser.set_defaults(gradloss=False)
parser.add_argument('--input', nargs='?', type=str, default='rgbd',
help='input type: rgb, rgbd, d')
parser.add_argument('--model_savepath_pretrain', nargs='?', type=str, default='./checkpoint',
help='Path for loading pretrain model[\'checkpoint/instance_norm etc\']')
parser.add_argument('--writer', nargs='?', type=str, default='fms',
help='writer comment: fms')
parser.add_argument('--num_workers', nargs='?', type=int, default=1, help='Number of workers for data loading')
args = parser.parse_args()
train(args)