forked from sagarjauhari/BCIpy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkernel_svm.py
214 lines (181 loc) · 7.43 KB
/
kernel_svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# /usr/bin/env python
# Copyright 2013, 2014 Justis Grant Peters and Sagar Jauhari
# This file is part of BCIpy.
#
# BCIpy is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# BCIpy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with BCIpy. If not, see <http://www.gnu.org/licenses/>.
# -*- coding: utf-8 -*-
"""
Created on Sat Nov 23 14:49:07 2013
@author: sagar
"""
from sklearn import svm
import pickle
from sklearn.metrics import classification_report, accuracy_score
from sklearn import cross_validation
from sklearn.cross_validation import StratifiedKFold
from sklearn.grid_search import GridSearchCV
from os.path import join, isfile
from os import listdir
import re
import sys
from slicer import Slicer
import numpy as np
from numpy import array
# example from Justis
"""
from slicer import Slicer
import sys
slicer = Slicer()
print 'loading raw from list of csvfiles'
slicer.load_series_from_csv('raw', sys.argv[1:]) # load raw from args
slicer.extract_rolling_median(seriesname='raw', window_size=128) # extract rolling median for entire 'raw' series
slicer.extract_first_n_median() # for each task, extract first 10 and add to as columns to tasks DataFrame
tasks = slicer.get_tasks() # get the tasks DataFrame
passage_tasks = tasks[tasks.is_passage==True]
d1_tasks = passage_tasks[passage_tasks.difficulty==1]
d2_tasks = passage_tasks[passage_tasks.difficulty==2]
print d2_tasks
sys.exit()
"""
try: # Import config params
from dev_settings import *
except ImportError:
print "Please create a dev_settings.py using dev_settings.py.example as\
an example"
from eegml import *
def get_values_single_subject():
with open('features.pickle','r') as fi:
rol_feat = pickle.load(fi)
# find task IDs where atleast 10 values are present
features=[]
targets=[]
for i in range(135):
g1 = [f for f in rol_feat['rolling_median'][i][3:13]]
g2 = rol_feat['Difficulty'][i]
if len(g1) >= 10 and 1<=g2<=2:
features.append(g1)
targets.append(g2)
return features, targets
#==============================================================================
# SVM
#==============================================================================
# SVM - Linear
def do_SVM_linear():
features, targets = get_values_single_subject()
clf = svm.SVC(kernel='linear')
clf.fit(features, targets)
class_pred = list(clf.predict(features))
print classification_report(targets, class_pred)
# SVM - Radial Basis Function kernel
# Ref - http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
#sklearn.svm.SVC.predict_proba
clf = svm.SVC(kernel='rbf', probability=True)
clf.fit(features, targets)
class_pred = list(clf.predict_proba(features))
print classification_report(targets, [[1,2][int(i[0]*2)] for i in class_pred])
# SVM, radial basis function, cross validation
clf = svm.SVC(kernel='rbf', probability=True)
scores = cross_validation.cross_val_score(clf, array(features), array(targets),
cv=10)
print "Using RBF kernel and 5 fold cross validation"
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
#==============================================================================
# GridSearch CV
# http://scikit-learn.org/dev/auto_examples/grid_search_digits.html
#==============================================================================
# Hold out 20% for final scores
def create_train_test():
skf = StratifiedKFold(targets, 5)
for train, test in skf:
break
X_train = [features[i] for i in train]
y_train = [targets[i] for i in train]
X_test = [features[i] for i in test]
y_test = [targets[i] for i in test]
def do_grid_cv_svc(X_train, y_train, X_test, y_test):
# Set the parameters by cross-validation
tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4],
'C': [1, 10, 100]},
{'kernel': ['linear'], 'C': [1, 10, 100]}]
svr = svm.SVC()
clf = GridSearchCV(svr, tuned_parameters)
clf.fit(array(X_train), array(y_train))
y_pred = clf.predict(X_test)
print "Using RBF kernel, grid-search, holding out 20% data for reporting final\
scores"
print(classification_report(y_test, y_pred))
print 'Accuracy: ',accuracy_score(y_test, y_pred)
def do_non_lin_svc(X_train, y_train, X_test, y_test):
print "Starting non linear SVC"
clf = svm.SVC()
clf.fit(array(X_train), array(y_train))
y_pred = clf.predict(X_test)
print(classification_report(y_test, y_pred))
print 'Accuracy: ',accuracy_score(y_test, y_pred)
#==============================================================================
# SVM with Slicer
#==============================================================================
def get_raw_file_list():
preproc_dir = join(ALL_RAW_URL,'preprocess')
onlyfiles=[f for f in listdir(preproc_dir) if isfile(join(preproc_dir,f))]
pat = re.compile("[0-9]*\.[0-9]*\.rawwave_microsec\.csv")
return [f for f in onlyfiles if pat.match(f)]
def check_all_zeros(mat2d):
"""
returns true if all values are zero
"""
x_size = len(mat2d)
y_size = len(mat2d[0])
for i in range(y_size):
for row in mat2d:
if row[i] != 0:
return False
return True
def do_kernelsvm_slicer(slicer):
n_vals = 10
n_folds = 5
slicer.extract_rolling_median(seriesname='raw', window_size=128)
slicer.extract_first_n_median(n=n_vals)
tasks = slicer.get_tasks()
#Remove rows in which all feature values are '0'
tasks = tasks[[any(tasks.iloc[i,0:n_vals]!=0) for i in tasks.index]]
print "Final # of rows: %d" % len(tasks)
passage_tasks = tasks[tasks.is_passage==True]
features = passage_tasks.loc[:, 0:(n_vals-1)]
targets = list(passage_tasks.difficulty)
print "Balancing classes for train and test data"
count_diff = targets.count(1) - targets.count(2)
assert count_diff >=0,"Count negative!"
sort_idx = np.argsort(targets)
features = [features.iloc[i] for i in sort_idx]
features = [features[i] for i in range(count_diff,len(targets))]
targets = [targets[i] for i in sort_idx][count_diff:]
assert len(features)==len(targets),"Lengths of feat and targ not same"
assert not check_all_zeros(array(features)),"all values zero. halting!"
print "Using statrifiedKFold, K=", n_folds
skf = StratifiedKFold(targets, n_folds)
for train, test in skf:
break
print "Creating train and test data"
X_train = [features[i] for i in train]
y_train = [targets[i] for i in train]
X_test = [features[i] for i in test]
y_test = [targets[i] for i in test]
#do_grid_cv_svc(X_train, y_train, X_test, y_test)
do_non_lin_svc(X_train, y_train, X_test, y_test)
if __name__=="__main__":
slicer = Slicer()
print 'Loading raw from list of csvfiles'
slicer.load_series_from_csv('raw', sys.argv[1:])
do_kernelsvm_slicer(slicer)