diff --git a/Matplotlib/Matplotlib_Correlation_Heatmap.ipynb b/Matplotlib/Matplotlib_Correlation_Heatmap.ipynb
new file mode 100644
index 0000000000..dedec8a818
--- /dev/null
+++ b/Matplotlib/Matplotlib_Correlation_Heatmap.ipynb
@@ -0,0 +1,326 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "cab73e9a-9e42-45dd-91cb-8d7d203d734c",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2023-10-16T17:37:56.670971Z",
+ "iopub.status.busy": "2023-10-16T17:37:56.670500Z",
+ "iopub.status.idle": "2023-10-16T17:37:56.681790Z",
+ "shell.execute_reply": "2023-10-16T17:37:56.680945Z",
+ "shell.execute_reply.started": "2023-10-16T17:37:56.670886Z"
+ },
+ "tags": []
+ },
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "edb9d0c3-fd59-4e5b-b86f-4612069d386c",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2023-10-16T17:41:03.383023Z",
+ "iopub.status.busy": "2023-10-16T17:41:03.382701Z",
+ "iopub.status.idle": "2023-10-16T17:41:03.402250Z",
+ "shell.execute_reply": "2023-10-16T17:41:03.401286Z",
+ "shell.execute_reply.started": "2023-10-16T17:41:03.382985Z"
+ },
+ "tags": []
+ },
+ "source": [
+ "# Matplotlib- Correlation Heatmap"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2881fa65-31d4-48ec-b7ec-33feace608e2",
+ "metadata": {},
+ "source": [
+ "**Tags:** #matplotlib #correlation #heatmap #dataviz #snippet"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4c18d244-aeab-406a-9f1a-450f9cfa51f3",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2023-10-16T17:43:00.717079Z",
+ "iopub.status.busy": "2023-10-16T17:43:00.716824Z",
+ "iopub.status.idle": "2023-10-16T17:43:00.727560Z",
+ "shell.execute_reply": "2023-10-16T17:43:00.726568Z",
+ "shell.execute_reply.started": "2023-10-16T17:43:00.717042Z"
+ }
+ },
+ "source": [
+ "**Author:** [Rittika Deb](https://www.linkedin.com/in/rittika-deb/)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d758e605-8691-42d0-bbea-154cb64a83ef",
+ "metadata": {},
+ "source": [
+ "**Last update:** 2023-10-17 (Created: 2023-10-17)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c357d9d5-7473-467f-82f7-535c71bda7f7",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2023-10-16T17:53:17.127826Z",
+ "iopub.status.busy": "2023-10-16T17:53:17.127606Z",
+ "iopub.status.idle": "2023-10-16T17:53:17.137291Z",
+ "shell.execute_reply": "2023-10-16T17:53:17.136412Z",
+ "shell.execute_reply.started": "2023-10-16T17:53:17.127802Z"
+ }
+ },
+ "source": [
+ "**Description:** This template will create a correlation heatmap. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a985c7d5-e713-4df4-a5cc-a7e07f28b45d",
+ "metadata": {},
+ "source": [
+ "## Input"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "053efcee-5abc-4261-9c3f-9b07335fce37",
+ "metadata": {},
+ "source": [
+ "### Import libraries"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "997f305a-2f31-43e9-8be6-4e9ca18a42f9",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2023-10-17T19:00:27.439866Z",
+ "iopub.status.busy": "2023-10-17T19:00:27.439512Z",
+ "iopub.status.idle": "2023-10-17T19:00:29.164570Z",
+ "shell.execute_reply": "2023-10-17T19:00:29.163862Z",
+ "shell.execute_reply.started": "2023-10-17T19:00:27.439775Z"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1c8863f9-7485-4249-9355-ccba68b273d6",
+ "metadata": {},
+ "source": [
+ "### Setup variables\n",
+ "- `data`: An array representing an 8x8 grid of data points.\n",
+ "- `xlabs and ylabs`: Lists of strings that label the rows and columns of the heatmap.\n",
+ "- `fig`: Top-level container that holds everything in the figure.\n",
+ "- `ax`: Axis object where you can plot your data.\n",
+ "- `heatmap`: Actual heatmap representation of the data.\n",
+ "- `ax.set_xticks and ax.set_yticks`: To set the tick positions along the x and y axes, respectively. \n",
+ "- `ax.set_xticklabels and ax.set_yticklabels`: These methods set the tick labels for the x and y axes, respectively.\n",
+ "- `plt.colorbar(heatmap)`: Adds a colorbar to the heatmap to indicate the color mapping of values."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "id": "cbf14455-b245-4837-a17d-46a6863f6543",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2023-10-16T19:25:44.835351Z",
+ "iopub.status.busy": "2023-10-16T19:25:44.835120Z",
+ "iopub.status.idle": "2023-10-16T19:25:44.838820Z",
+ "shell.execute_reply": "2023-10-16T19:25:44.838198Z",
+ "shell.execute_reply.started": "2023-10-16T19:25:44.835327Z"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "data = {\n",
+ " 'A': np.random.rand(100),\n",
+ " 'B': np.random.rand(100),\n",
+ " 'C': np.random.rand(100),\n",
+ " 'D': np.random.rand(100)\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "id": "ba4aa346-3ac0-4529-b897-33a2e5b00a96",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2023-10-16T19:25:48.030371Z",
+ "iopub.status.busy": "2023-10-16T19:25:48.030146Z",
+ "iopub.status.idle": "2023-10-16T19:25:48.036872Z",
+ "shell.execute_reply": "2023-10-16T19:25:48.036321Z",
+ "shell.execute_reply.started": "2023-10-16T19:25:48.030348Z"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "df = pd.DataFrame(data)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5a38219b-cc92-47c2-a6ce-0e46c52da4e1",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2023-10-16T19:12:24.550584Z",
+ "iopub.status.busy": "2023-10-16T19:12:24.550358Z",
+ "iopub.status.idle": "2023-10-16T19:12:24.553470Z",
+ "shell.execute_reply": "2023-10-16T19:12:24.552819Z",
+ "shell.execute_reply.started": "2023-10-16T19:12:24.550561Z"
+ }
+ },
+ "source": [
+ "## Model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "id": "a3efb78f-8124-4393-a883-473d2743296a",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2023-10-16T19:25:49.435376Z",
+ "iopub.status.busy": "2023-10-16T19:25:49.435155Z",
+ "iopub.status.idle": "2023-10-16T19:25:49.439089Z",
+ "shell.execute_reply": "2023-10-16T19:25:49.438391Z",
+ "shell.execute_reply.started": "2023-10-16T19:25:49.435353Z"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "correlation_matrix = df.corr()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "id": "d7d33bc4-e1b4-4d8e-b4d4-0d1e78f45d5d",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2023-10-16T19:25:50.061146Z",
+ "iopub.status.busy": "2023-10-16T19:25:50.060595Z",
+ "iopub.status.idle": "2023-10-16T19:25:50.068156Z",
+ "shell.execute_reply": "2023-10-16T19:25:50.067487Z",
+ "shell.execute_reply.started": "2023-10-16T19:25:50.061109Z"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "xlabs = correlation_matrix.columns\n",
+ "ylabs = correlation_matrix.index"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2f83319a-99d3-4b17-aedf-c1f923d8b904",
+ "metadata": {},
+ "source": [
+ "## Output"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "5ebe3d71-a044-4fed-8d3d-a6bd7bc67a02",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2023-10-16T19:25:53.050436Z",
+ "iopub.status.busy": "2023-10-16T19:25:53.050214Z",
+ "iopub.status.idle": "2023-10-16T19:25:53.231261Z",
+ "shell.execute_reply": "2023-10-16T19:25:53.230644Z",
+ "shell.execute_reply.started": "2023-10-16T19:25:53.050413Z"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "([,\n",
+ " ,\n",
+ " ,\n",
+ " ],\n",
+ " [Text(0, 0, 'A'), Text(0, 1, 'B'), Text(0, 2, 'C'), Text(0, 3, 'D')])"
+ ]
+ },
+ "execution_count": 39,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb8AAAFzCAYAAACuOQe9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZ4klEQVR4nO3de9RldX3f8fdnHu5yz4CX4RodjYTE2xRi0eA1gu1yTGsMY6jSqvNHQtpoYjTVhS40ITevkcSMDUElSpRGO21HMYmyrK0aBuMNGuwEgwwqMojSKqjDfPvH2SOHh3mec56znzPn2c9+v9baa87e+3d+53fOsPjO93fbqSokSeqTNbNugCRJ+5vBT5LUOwY/SVLvGPwkSb1j8JMk9Y7BT5LUOwY/dUaSC5J8ssX7P5zkRcvZJkndZPDTkiR5QZLtSf5fkq83AeVJs27XfElel+SK4WtVdW5VvWsKn3V5kjfMu3ZKkkpywDLUf02Sl7StR9J9DH4aW5KXA28Bfgd4MHAS8MfAxgnqekBQWI5AIUnjMPhpLEmOAi4GfqWq/qqqvltVP6yq/1pVr2jKHJzkLUm+1hxvSXJwc+8pSXYmeWWSbwB/3mRnVyW5IsldwAVJjkryZ01WeWuSNySZW6BNb01yS5K7klyX5MnN9XOA/wj8YpOhfr65/qMMKsmaJK9JcnOSbyZ5d/Mdh7O2FyX5apJdSV7d8vc7OMkfNvXdluQdSQ5t7h2T5L8luT3Jnc3rE5p7vw08GXh7813e3lyvJL+c5P8k+b9JXp/k4Un+V/N7vD/JQaPqH/pdLknyd817/0uSY9t8X2mlM/hpXE8EDgE+uEiZVwM/AzwWeAxwBvCaofsPAY4FTgY2N9c2AlcBRwN/AVwO7AYeATwO+DlgoS6/a5vPOhZ4L/CBJIdU1UcYZKd/WVWHV9Vj9vHeC5rjqcCPA4cDb59X5knAo4CnAxclefQi332U3wUe2bT3EcA64KLm3hrgzxn8LicBd+9tS1W9GvgfwIXNd7lwqM5nAU9g8Jv/JrAFOB84ETgd2DSq/iEvBP4d8FAGv//bWnxXaeWrKg+PkQfwS8A3RpT5R+DZQ+fPAv6pef0U4AfAIUP3Xwd8Yuj8wcD3gUOHrm0CPt68vgD45CKffyfwmKG6r5h3/xrgJc3rvwV+eejeo4AfAgcApwAFnDB0/++A8xb43MuBe4BvDx13NXUcAAT4LvDwofc8EfjKAvU9FrhzX+0eulbAWUPn1wGvHDp/I/CWJdT/u0PnpzV/V3Oz/u/Ow2Nah2MsGtcdwNokB1TV7gXKPAy4eej85ubaXrdX1T3z3nPL0OuTgQOBryfZe23NvDI/kuQ3gBc3n1HAkcDa0V9lwbYewCAA7/WNodffY5AdLuQPq+pHWW6SU4CvNKfHAYcB1w19rwBzTdnDgDcD5wDHNPePSDJXVfcu8pm3Db2+ex/nD1lC/cO/8c0M/h7WzqtTWjXs9tS4PsUgK3vuImW+xiCA7XVSc22vfT1CZPjaLc1nrK2qo5vjyKr6yflvasb3fhN4PnBMVR0NfIdBUFnos0a1dTfT+Z/9LgbB6CeHvtdRVbU3mP46g8zzzKo6EvjZ5vq432WUUfXDoKt0r5MYZMG7Wn6utGIZ/DSWqvoOgzGqS5M8N8lhSQ5Mcm6S32+KvQ94TZLjkqxtyl+xUJ37+IyvAx8F3pjkyGZSysOTnL2P4kcwCFa3AwckuYhB5rfXbcApSRb6b/x9wMuSnJrkcO4bI1woq51YVe0B3gm8OcnxAEnWJXnW0He5G/h2M9HktfOquI3BuOSkRtUPcH6S05os8WLgqhFZp9RpBj+NrareCLycwSSW2xlkahcCH2qKvAHYDnwB+CLw2ebaUrwQOAi4gcEY3lUMJmHMdzXwEeDLDLrp7uH+XXcfaP68I8ln9/H+y4D3AJ9g0D15D/CrS2zrUrwS2AF8upnZ+jcMsjEYLB85lEGm9WkG32vYW4HnNTM1J5mIMqp+GPwWlzPo6j0E+PcTfI7UGanyYbZSnyW5hsHkoP8067ZI+4uZnySpdwx+kqQVLcllzWYUX1rgfpK8LcmOJF9I8vhRdRr8pJ6rqqfY5akV7nIGS3UWci6wvjk2A38yqkKDnyRpRauqTwDfWqTIRuDdNfBp4Ogk+5oo9yMGP0lS163j/rO9dzbXFjS1HV6Oylwdz4HTql7AnQ991OhCam3NnP9GnLbdP1j25ZWa57t33cr37/5WRpdcmieseVDd1XJJ6A6+fz2D5UZ7bamqLa0qHWFqwe94DuTNcyePLqiJXfXSq2fdhF444ujDZt2EVe+2W+6YdRNWvb/5i+dMpd67uJe3HnpKqzr+xd033lNVG1pUcSv336XohObagtzbU5I0sSSsOWDZE8ql2gpcmORK4EzgO82OUQsy+EmSVrQk72PwZJi1SXYy2KLvQICqegewDXg2g12Uvgf821F1GvwkSZML5MDpjotX1aYR9wv4laXUafCTJE0urIRuzyUz+EmSJhfIgd0Lfs7hliT1jpmfJGliK2S255IZ/CRJk+tot6fBT5I0OSe8SJL6JkDmuhf8nPAiSeodMz9J0uQCazqY+Rn8JEkthKwx+EmS+iSQDj72y+AnSZpY6Ga3Z/fCtSRJLZn5SZImFxzzkyT1TTrZ7WnwkyRNLHGRuyRJnWDmJ0lqJWu6l0cZ/CRJk3PCiySpf5zwIknqmXQ08+teR60kSS2Z+UmSWnHCiySpXzra7WnwkyS14IQXSVLPOOFFkqSOMPOTJLXihBdJUr90tNvT4CdJaiGdDH7dy1UlSWrJzE+S1MqqzvySPDdJJfmJaTZIktQdg6UOa1ods7CUT90EfLL5U5IkANbMpdUxkzaPUyjJ4cCTgBcD5021RZKk7shgwkubYxbGzfw2Ah+pqi8DdyR5whTbJEnSVI074WUT8Nbm9ZXN+XXzCyXZDGwGOM65NJLUC6tykXuSY4GnAT+VpIA5oJK8oqpquGxVbQG2AKzPIfWAyiRJq8pq3tvzecB7qurkqjqlqk4EvgI8ebpNkyR1wWod89sEfHDetf+Msz4lSaSTSx1GdntW1VP3ce1t02mOJEnT56wUSdLkOjrmZ/CTJLWQ1TnbU5KkRaV7mV/3wrUkSS2Z+UmSJtbVdX4GP0lSK475SZL6Jd18krvBT5LUShczv+61WJKklsz8JEmt2O0pSeoVZ3tKknoo4JifJKlvkrQ6xqj/nCQ3JtmR5FX7uH9Sko8n+fskX0jy7FF1GvwkSStWkjngUuBc4DRgU5LT5hV7DfD+qnoccB7wx6PqtdtTkjS5TH2pwxnAjqq6CSDJlcBG4IahMgUc2bw+CvjaqEoNfpKkFpZlkfvaJNuHzrdU1Zbm9TrglqF7O4Ez573/dcBHk/wq8CDgGaM+0OAnSZpcWI4JL7uqakOL928CLq+qNyZ5IvCeJKdX1Z6F3uCYnyRpJbsVOHHo/ITm2rAXA+8HqKpPAYcAaxer1OAnSWola9LqGOFaYH2SU5McxGBCy9Z5Zb4KPB0gyaMZBL/bF6vUbk9J0sRCSKaXR1XV7iQXAlcDc8BlVXV9kouB7VW1Ffh14J1JXsZg8ssFVVWL1WvwkyRNLsCUd3ipqm3AtnnXLhp6fQNw1lLqNPhJklrxqQ6SJHWAmZ8kqRU3tpYk9cvgsQ6zbsWSGfwkSa10MfPrXriWJKklMz9JUjsdnO1p8JMkTWzcZ/KtNAY/SVI7Zn6SpL5xwoskSR1g5idJmpzr/CRJvdTBbk+DnySplWk+0mhaphb87nzoo7jqpVdPq3oBz/vts2fdhF645Nwts27Cqrdu/UmzboImtR8eaTQN3QvXkiS1ZLenJKmFdPJ5fgY/SVI77vAiSeqV0MkdXrrXYkmSWjLzkyS1ELs9JUn944QXSVK/BLc3kyT1TVzkLklSF5j5SZImFtzbU5LUNx3d29PgJ0lqwef5SZL6qIPr/LoXriVJasnMT5LUjovcJUm9Esf8JEl91MHZnt0L15IktWTmJ0lqx25PSVLvdHCpg8FPkjS5xNmekqQe6mDm171wLUlSS2Z+kqR2nPAiSeoVx/wkSb3UwTE/g58kqZ0Odnt2r8WSJLVk5idJaiF2e0qSeiY44UWS1C8FVAczv+6Fa0mSWjLzkyS14MNsJUl9ZPCTJPVNF8f8DH6SpMmlm92eY7U4yb1JPpfk80k+m+SfT7thkiQBJDknyY1JdiR51QJlnp/khiTXJ3nvqDrHzfzurqrHNh/wLOAS4OxxGy5JWsWm2O2ZZA64FHgmsBO4NsnWqrphqMx64LeAs6rqziTHj6p3km7PI4E7J3ifJGk1mu4i9zOAHVV1E0CSK4GNwA1DZV4KXFpVdwJU1TdHVTpu8Ds0yeeAQ4CHAk/bV6Ekm4HNAA86at2YVUuSuivTnvCyDrhl6HwncOa8Mo8ESPI/gTngdVX1kcUqnaTb84nAu5OcXlU1XKiqtgBbANY+7DH1gFokSatLWI4JL2uTbB8639LEk3EdAKwHngKcAHwiyU9V1bcXe8OSVNWnkqwFjgNGppaSJI2wq6o2LHDvVuDEofMTmmvDdgKfqaofAl9J8mUGwfDahT5wyeE6yU8wSCvvWOp7JUmrT2VNq2OEa4H1SU5NchBwHrB1XpkPMcj6aJKzRwI3LVbpUsf8YJDkvqiq7h3zvZKkVWu6jzSqqt1JLgSuZpB4XVZV1ye5GNheVVubez+X5AbgXuAVVbVogjZW8KuquXbNlyStVmNkb+3qr9oGbJt37aKh1wW8vDnG0r1l+ZIkteT2ZpKkdtzbU5LUKx3d29PgJ0maWFef5G7wkyS108HMr3stliSpJTM/SVIrhd2ekqReydTX+U2DwU+S1I7BT5LUK+nmbM/uhWtJkloy85MkTawc85Mk9VIHuz0NfpKkVrqY+XWvxZIktWTmJ0lqIS5ylyT1Txe7PQ1+kqTJBSe8SJL6JlQHp490r8WSJLVk5idJmpgPs5Uk9ZITXiRJvdPFpQ7dC9eSJLVk5idJasGNrSVJPeSEF0lSrxTdHPMz+EmSJpdudnt2r8WSJLVk5idJasVuT0lS73Sx29PgJ0lqxcxPktQr1dF1ft1rsSRJLU0t81szt4Yjjj5sWtULuOTcLbNuQi/81oc3z7oJq94Vj/7rWTdh9ZviQnS7PSVJveMOL5Kk3qnqXvBzzE+S1DtmfpKkFkJ1MI8y+EmSJubG1pKkXjL4SZJ6p4vBr3sdtZIktWTmJ0lqIZ3M/Ax+kqRWurjOz+AnSZqYsz0lSb3UxeDnhBdJUu+Y+UmSWuli5mfwkyS1ECe8SJL6pYA9Hcz8HPOTJPWOwU+S1Eo1C90nPUZJck6SG5PsSPKqRcr96ySVZMOoOu32lCRNrqa7yD3JHHAp8ExgJ3Btkq1VdcO8ckcA/wH4zDj1mvlJklqZcuZ3BrCjqm6qqh8AVwIb91Hu9cDvAfeM02aDnySphcFszzbHCOuAW4bOdzbX7mtB8njgxKr67+O22m5PSdKsrU2yfeh8S1VtGeeNSdYAbwIuWMoHGvwkSRNbpr09d1XVQpNUbgVOHDo/obm21xHA6cA1SQAeAmxN8pyqGg6o92PwkyS1MuVF7tcC65OcyiDonQe84L7Pru8Aa/eeJ7kG+I3FAh8Y/CRJLe2ZYt1VtTvJhcDVwBxwWVVdn+RiYHtVbZ2kXoOfJKmVaW9vVlXbgG3zrl20QNmnjFOnsz0lSb1j5idJmti4u7SsNAY/SVIrPtVBktQ7Xcz8HPOTJPWOmZ8kaXIFe2rWjVg6g58kaWLLtMPLfmfwkyS14oQXSVLvVAe7PZ3wIknqHTM/SVILYU8Hx/zGzvySPCTJlUn+Mcl1SbYleeQ0GydJWtkKpv0w26kYK/PL4CFJHwTeVVXnNdceAzwY+PL0midJWum6OOY3brfnU4EfVtU79l6oqs9Pp0mSpC7p4lKHcbs9Tweum2ZDJEnaX5Z1wkuSzcBmgMOPOXFEaUlS53V0h5dxM7/rgSeMKlRVW6pqQ1VtOPRBP9auZZKkFa+rE17GDX4fAw5uMjsAkvx0kidPp1mSpK6oanfMwljBr6oK+HngGc1Sh+uBS4BvTLNxkiRNw9hjflX1NeD5U2yLJKmDurjI3R1eJEmtrOZ1fpIkPUAxu0krbRj8JEmTW+VLHSRJWjXM/CRJrTjmJ0nqnS7u7WnwkyRNrOjmmJ/BT5LUShe7PZ3wIknqHTM/SVIrXcz8DH6SpIlVwR4XuUuS+qaLmZ9jfpKk3jHzkyS10sXMz+AnSWrFdX6SpF4p8KkOkqSeqW52ezrhRZLUO2Z+kqRWHPOTJPXKYMxv1q1YOoOfJKkVg58kqXe62O3phBdJUu+Y+UmSJtfRpQ4GP0nSxArYs2fWrVg6g58kqZUuZn6O+UmSesfMT5LUShczP4OfJGligye5z7oVS2fwkyS1Uh1M/Qx+kqRWOhj7nPAiSeofMz9JUitdXOdn5idJmlhV+2OUJOckuTHJjiSv2sf9lye5IckXkvxtkpNH1WnwkyS1sqfaHYtJMgdcCpwLnAZsSnLavGJ/D2yoqp8GrgJ+f1Sbp9btufsHu7ntljumVb2AdetPmnUTeuGKR//1rJuw6p3/pmfOugmr3nX33jzrJkzqDGBHVd0EkORKYCNww94CVfXxofKfBs4fValjfpKkVqY823MdcMvQ+U7gzEXKvxj48KhKDX6SpFaq/Sr3tUm2D51vqaotS60kyfnABuDsUWUNfpKkiS3TDi+7qmrDAvduBU4cOj+huXY/SZ4BvBo4u6q+P+oDDX6SpFam3O15LbA+yakMgt55wAuGCyR5HPCnwDlV9c1xKnW2pyRpxaqq3cCFwNXA/wbeX1XXJ7k4yXOaYn8AHA58IMnnkmwdVa+ZnySplT1T3tm6qrYB2+Zdu2jo9TOWWqfBT5I0saKbe3sa/CRJkxtzl5aVxuAnSWqh2NPB6OeEF0lS75j5SZJaqQ4+1cHgJ0ma2GDCS/e6PQ1+kqTJlc/zkySpE8z8JEmt2O0pSeqVYlk2tt7vDH6SpMnVsjzSaL8z+EmSWulgr6cTXiRJ/WPmJ0lqZdpPdZgGg58kaWJV5WxPSVL/uL2ZJKl3fKqDJEkdYOYnSWrFMT9JUq9UOdtTktRDHUz8HPOTJPWPmZ8kqRX39pQk9UpVdXKpg8FPktSKmZ8kqXe6GPyc8CJJ6h0zP0nS5MonuUuSeqboZrenwU+S1IKPNJIk9c1q3d4syb3AF4EDgd3Au4E3V3XxCU6SJI2X+d1dVY8FSHI88F7gSOC1U2yXJKkjutjtuaSlDlX1TWAzcGGSTKdJkqSu2Dvhpc0xC0se86uqm5LMAccDtw3fS7KZQXDksCMetiwNlCStYNXN2Z7Lusi9qrZU1Yaq2nDwoccuZ9WSJC2bJWd+SX4cuBf45vI3R5LULT3Y2DrJccA7gLdXF0c4JUnLrovdnuMEv0OTfI77ljq8B3jTNBslSeqGopuzPUcGv6qa2x8NkSR1UEcXuftUB0lS77i9mSSpldU65idJ0gLc2FqS1DNVUHu6t9WzwU+S1IoTXiRJ6gAzP0lSK475SZL6pWb3ZIY2DH6SpIntfaRR1zjmJ0nqHTM/SVIre8qlDpKkPvFhtpKkvikGE17aHKMkOSfJjUl2JHnVPu4fnOQvm/ufSXLKqDoNfpKkVqqq1bGYJHPApcC5wGnApiSnzSv2YuDOqnoE8Gbg90a12eAnSVrJzgB2VNVNVfUD4Epg47wyG4F3Na+vAp6eJItV6pifJGlyBXumu7fnOuCWofOdwJkLlamq3Um+A/wYsGuhSg1+kqRWlmHCy9ok24fOt1TVlraVLsbgJ0maWFFU+6UOu6pqwwL3bgVOHDo/obm2rzI7kxwAHAXcsdgHOuYnSZpcs9RhirM9rwXWJzk1yUHAecDWeWW2Ai9qXj8P+FiNmElj5idJWrGaMbwLgauBOeCyqro+ycXA9qraCvwZ8J4kO4BvMQiQizL4SZJamfYi96raBmybd+2iodf3AL+wlDoNfpKkFsrtzSRJ/VJubyZJUjeY+UmSWqnpLnKfCoOfJGlyHe32NPhJklpYlkXu+53BT5I0sQL2dDDzc8KLJKl3zPwkSZMrJ7xIknpnvKexrzQGP0lSK12c8OKYnySpd8z8JEmTc52fJKlviurkhJeMeN7f5BUntwM3T6Xy6VkL7Jp1I1Y5f+Pp8zeevi7+xidX1XHLXWmSjzD4PdrYVVXnLEd7xjW14NdFSbZX1YZZt2M18zeePn/j6fM37j4nvEiSesfgJ0nqHYPf/W2ZdQN6wN94+vyNp8/fuOMc85Mk9Y6ZnySpdwx+kqTeMfgNSfKkJJfOuh3SuJI8IslZ+7h+VpKHz6JNUhf0PvgleVySP0jyT8DrgX+YcZNWtSRrk2TW7VhF3gLctY/rdzX3tIySHJdk2ReKa//rZfBL8sgkr03yD8AfAV9lMPnnqVX1RzNu3qqR5GeSXJPkr5p/ZHwJ+BJwW5L9upvDKvbgqvri/IvNtVP2f3NWnwy8Lsku4Ebgy0luT3LRrNumyfUy+DHI7p4G/MuqelIT8O6dcZtWo7cDvwO8D/gY8JKqegjws8Als2zYKnL0IvcO3V+NWOVeBpwF/LOqOraqjgHOBM5K8rLZNk2T6mvw+1fA14GPJ3lnkqcDdsUtvwOq6qNV9QHgG1X1aYCqsmt5+WxP8tL5F5O8BLhuBu1Zjf4NsKmqvrL3QlXdBJwPvHBmrVIrvXyqQ1V9CPhQkgcBG4FfA45P8ifAB6vqozNs3moyvNX73fPuucB0efwa8MEkv8R9wW4DcBDw87Nq1CpzYFU9YBPrqro9yYGzaJDac5F7I8kxwC8Av1hVT591e1aDJPcC32WQVR8KfG/vLeCQqvJ/HMskyVOB05vT66vqY7Nsz2qS5LNV9fil3tPKZvCTpEUM/SPuAbfwH3GdZfCTJPVOXye8SJJ6zOAnSeodg58kqXcMfpKk3jH4SZJ65/8D2eir0c86e2wAAAAASUVORK5CYII=",
+ "text/plain": [
+ "