-
Notifications
You must be signed in to change notification settings - Fork 176
/
Copy pathRFM-analysis.py
117 lines (95 loc) · 4.02 KB
/
RFM-analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# Copyright (c) 2016 Joao Correia. All rights reserved.
#
# This program is licensed to you under the Apache License Version 2.0,
# and you may not use this file except in compliance with the Apache License Version 2.0.
# You may obtain a copy of the Apache License Version 2.0 at http://www.apache.org/licenses/LICENSE-2.0.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the Apache License Version 2.0 is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the Apache License Version 2.0 for the specific language governing permissions and limitations there under.
#
# Version: 0.1.0
# URL: -
#
# Authors: Joao Correia <[email protected]> https://joaocorreia.io
# Copyright: Copyright (c) 2016 Joao Correia
# License: Apache License Version 2.0
#
# If you have suggestions or improvements please contribute
# on https://github.com/joaolcorreia/RFM-analysis
#
#!/usr/bin/python
import sys, getopt
import pandas as pd
from datetime import datetime
def main(argv):
inputfile = ''
outputfile = ''
inputdate = ''
try:
opts, args = getopt.getopt(argv,"hi:o:d:")
except getopt.GetoptError:
print 'RFM-analysis.py -i <orders.csv> -o <rfm-table.csv> -d <yyyy-mm-dd>'
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
print 'RFM-analysis.py -i <orders.csv> -o <rfm-table.csv> -d "yyyy-mm-dd"'
sys.exit()
elif opt in ("-i", "--ifile"):
inputfile = arg
elif opt in ("-o", "--ofile"):
outputfile = arg
elif opt in ("-d", "--dinputdate"):
inputdate = arg
rfm(inputfile,outputfile,inputdate)
def rfm(inputfile, outputfile, inputdate):
print " "
print "---------------------------------------------"
print " Calculating RFM segmentation for " + inputdate
print "---------------------------------------------"
NOW = datetime.strptime(inputdate, "%Y-%m-%d")
# Open orders file
orders = pd.read_csv(inputfile, sep=',')
orders['order_date'] = pd.to_datetime(orders['order_date'])
rfmTable = orders.groupby('customer').agg({'order_date': lambda x: (NOW - x.max()).days, # Recency
'order_id': lambda x: len(x), # Frequency
'grand_total': lambda x: x.sum()}) # Monetary Value
rfmTable['order_date'] = rfmTable['order_date'].astype(int)
rfmTable.rename(columns={'order_date': 'recency',
'order_id': 'frequency',
'grand_total': 'monetary_value'}, inplace=True)
quantiles = rfmTable.quantile(q=[0.25,0.5,0.75])
quantiles = quantiles.to_dict()
rfmSegmentation = rfmTable
rfmSegmentation['R_Quartile'] = rfmSegmentation['recency'].apply(RClass, args=('recency',quantiles,))
rfmSegmentation['F_Quartile'] = rfmSegmentation['frequency'].apply(FMClass, args=('frequency',quantiles,))
rfmSegmentation['M_Quartile'] = rfmSegmentation['monetary_value'].apply(FMClass, args=('monetary_value',quantiles,))
rfmSegmentation['RFMClass'] = rfmSegmentation.R_Quartile.map(str) + rfmSegmentation.F_Quartile.map(str) + rfmSegmentation.M_Quartile.map(str)
rfmSegmentation.to_csv(outputfile, sep=',')
print " "
print " DONE! Check %s" % (outputfile)
print " "
# We create two classes for the RFM segmentation since, being high recency is bad, while high frequency and monetary value is good.
# Arguments (x = value, p = recency, monetary_value, frequency, k = quartiles dict)
def RClass(x,p,d):
if x <= d[p][0.25]:
return 1
elif x <= d[p][0.50]:
return 2
elif x <= d[p][0.75]:
return 3
else:
return 4
# Arguments (x = value, p = recency, monetary_value, frequency, k = quartiles dict)
def FMClass(x,p,d):
if x <= d[p][0.25]:
return 4
elif x <= d[p][0.50]:
return 3
elif x <= d[p][0.75]:
return 2
else:
return 1
if __name__ == "__main__":
main(sys.argv[1:])