-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathprint_dataset_stats.py
executable file
·96 lines (77 loc) · 3.18 KB
/
print_dataset_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/usr/bin/env python3
import os
from collections import Counter
from util.dataset import DATASETS
from util.io import load_json, load_text
def get_src_video(dataset, video_name):
if dataset.startswith('fs'):
video_name = video_name.rsplit('_', 3)[0]
elif dataset.startswith('tennis'):
video_name = video_name.rsplit('_', 2)[0]
elif dataset.startswith('finegym'):
video_name = video_name.split('_E_', 1)[0]
return video_name
def print_dataset_stats(dataset):
print('=== {} ==='.format(dataset))
class_file = os.path.join('data', dataset, 'class.txt')
if not os.path.isfile(class_file):
print('Dataset not found!')
return
print('Categories:', len(load_text(class_file)))
src_videos = {}
total_frames = 0
total_events = 0
all_videos = set()
for split in ['train', 'val', 'test']:
split_file = os.path.join('data', dataset, '{}.json'.format(split))
if os.path.exists(split_file):
print('{}:'.format(split.capitalize()))
labels = load_json(split_file)
num_events = sum([len(x['events']) for x in labels])
num_frames = sum([x['num_frames'] for x in labels])
src_videos_split = {get_src_video(dataset, x['video'])
for x in labels}
print('\torig videos:', len(src_videos_split))
# if len(src_videos_split) <= 20:
# for v in sorted(src_videos_split):
# print('\t\t', v)
print('\tvideos:', len(labels))
print('\tevents:', num_events)
print('\tframes:', num_frames)
print('\tevents / frames (%):', round(
num_events / num_frames * 100, 2))
total_frames += num_frames
total_events += num_events
first_event = min(
[min(e['frame'] for e in x['events']) for x in labels])
last_event = min(
[min(x['num_frames'] - e['frame'] for e in x['events'])
for x in labels])
print('\tmin frame (of first event):', first_event)
print('\tmax frame (of last event):', last_event)
split_videos = {x['video'] for x in labels}
assert len(split_videos & all_videos) == 0, \
'Bad video splits!'
all_videos.update(split_videos)
src_videos[split] = src_videos_split
label_counts = Counter()
for x in labels:
for e in x['events']:
label_counts[e['label']] += 1
print('\tLabel counts:')
for l in sorted(label_counts.keys()):
print('\t\t{} : {}'.format(l, label_counts[l]))
print('Overall:')
print('\thas train/test orig video overlap:',
len(src_videos['train'] &
src_videos.get('test', src_videos['val'])) > 0)
print('\tnum frames:', total_frames)
print('\tnum events:', total_events)
print('\tevent %:', total_events * 100 / total_frames)
def main():
for i, dataset in enumerate(DATASETS):
print_dataset_stats(dataset)
if i < len(DATASETS) - 1:
print()
if __name__ == '__main__':
main()